lironui / DDCD

Hyperspectral Image Classification

Home Page:https://lironui.github.io/

Repository from Github https://github.comlironui/DDCDRepository from Github https://github.comlironui/DDCD

Hyperspectral Image Classification

Welcome to my HomePage

This repository implementates the Deep Double-Channel Dense Network (DDCD) for hyperspectral image classification based on PyTorch.

The detailed results can be seen in the A Deep Double-Channel Dense Network for Hyperspectral Image Classification.

The training and testing code can be seen in Double-Branch-Dual-Attention-Mechanism-Network.

If our code is helpful to you, please cite

Wang K, Zheng, S, Li, R, Gui L. A Deep Double-Channel Dense Network for Hyperspectral Image Classification[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 46-62.

Li R, Zheng S, Duan C, et al. Classification of Hyperspectral Image Based on Double-Branch Dual-Attention Mechanism Network[J]. Remote Sensing, 2020, 12(3): 582.

Requirements:

numpy >= 1.16.5
PyTorch >= 1.3.1
sklearn >= 0.20.4

Datasets:

You can download the hyperspectral datasets in mat format at: http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.

Network:

network

About

Hyperspectral Image Classification

https://lironui.github.io/

License:GNU General Public License v3.0


Languages

Language:Python 100.0%