Guanliang MENG (linzhi2013)

linzhi2013

Geek Repo

Company:ZFMK

Location:Bonn, Germany

Home Page:https://www.ororca.cn/

Github PK Tool:Github PK Tool


Organizations
bioconda

Guanliang MENG's repositories

MitoZ

MitoZ: A toolkit for assembly, annotation, and visualization of animal mitochondrial genomes

Language:ShellLicense:GPL-3.0Stargazers:117Issues:12Issues:220

taxonomy_ranks

To get taxonomy ranks information with ETE3 Python3 module (http://etetoolkit.org/)

Language:PythonLicense:GPL-3.0Stargazers:9Issues:2Issues:1

gbseqextractor

Extract any CDS or rNRA or tRNA DNA sequences of genes from Genbank file.

Language:PythonLicense:GPL-3.0Stargazers:8Issues:2Issues:3

msaconverter

msaconverter is a tool to convert a multiple sequence alignment into different format with Biopython (http://www.biopython.org/)

Language:PythonLicense:GPL-3.0Stargazers:7Issues:2Issues:1

extract_codon_alignment

To extract some codon positions (1st, 2nd, 3rd) from a CDS alignment.

Language:PythonLicense:GPL-3.0Stargazers:2Issues:2Issues:0

msa_cigars

A tool to get the CIGARs of a multiple sequence alignment.

License:GPL-3.0Stargazers:2Issues:2Issues:0

bold_identification

To identify taxa of given sequences via BOLD system (http://www.boldsystems.org/index.php)

Language:PythonLicense:GPL-3.0Stargazers:1Issues:2Issues:1

extract_fasta_seq

To extract specific fasta sequences from a fasta file. By Guanliang MENG, see https://github.com/linzhi2013

License:GPL-3.0Stargazers:1Issues:2Issues:0

polish_genbank

Check for the internal stop codon, then substitute the internal stop codon with NNN.

License:GPL-3.0Stargazers:1Issues:3Issues:0

specimen_bioseq_system

The Specimen Bioseq Information Managment System

License:NOASSERTIONStargazers:0Issues:2Issues:0
Language:ShellLicense:MITStargazers:0Issues:2Issues:0

atgcN_count

To stat the counts of each base in a fasta file.

License:GPL-3.0Stargazers:0Issues:2Issues:0

batch_tar

To tar (and compress) files or directories in batch mode.

Language:PythonLicense:GPL-3.0Stargazers:0Issues:2Issues:0

bioconda-recipes

Conda recipes for the bioconda channel.

Language:ShellLicense:MITStargazers:0Issues:1Issues:0

books-1

我读过的书。嘿嘿,分享给你。

Stargazers:0Issues:1Issues:0

breakSeqInNs_then_translate

Filter the sequences by translating the protein coding genes (PCGs) with proper genetic code table, if one of the PCGs has interal stop codon, filter out this sequence.

License:GPL-3.0Stargazers:0Issues:2Issues:0
Language:ShellLicense:NOASSERTIONStargazers:0Issues:2Issues:0

cigar_coordinates

To get the coordinates of a given CIGAR string.

License:GPL-3.0Stargazers:0Issues:2Issues:0

extract_specific_lines

To extract specific lines which maps the query ids (of the query file) from the subject file.

Language:PythonLicense:GPL-3.0Stargazers:0Issues:2Issues:0

extract_specific_sites_from_msa

To extract some sites (or codon) from a multiple sequence alignment

License:GPL-3.0Stargazers:0Issues:2Issues:0

find_longest_transcripts

To find out the longest transcripts/proteins

Language:PythonLicense:MITStargazers:0Issues:2Issues:0

group_genetic_distance

To derive within- and between-groups genetic distance based on pairwise genetic distance matrix

Language:PythonLicense:GPL-3.0Stargazers:0Issues:2Issues:0
Language:RLicense:CC0-1.0Stargazers:0Issues:1Issues:0
Language:ShellStargazers:0Issues:0Issues:0

Machine-learning-learning-notes

周志华《机器学习》又称西瓜书是一本较为全面的书籍,书中详细介绍了机器学习领域不同类型的算法(例如:监督学习、无监督学习、半监督学习、强化学习、集成降维、特征选择等),记录了本人在学习过程中的理解思路与扩展知识点,希望对新人阅读西瓜书有所帮助!

Stargazers:0Issues:1Issues:0

mglcmdtools

`mglcmdtools` is a collection of common cmd tools intended to be used in Python3 scripts. By Guanliang MENG, see https://github.com/linzhi2013/mglcmdtools.

Language:PythonLicense:GPL-3.0Stargazers:0Issues:2Issues:0

ntJoin

🔗Genome assembly scaffolder using minimizer graphs

Language:PythonLicense:GPL-3.0Stargazers:0Issues:0Issues:0

ParallelTask

A simple and lightweight parallel task engine

Language:PythonLicense:GPL-3.0Stargazers:0Issues:0Issues:0

physalia-lcwgs

Files for the the Physalia course on Population genomic inference from low-coverage whole-genome sequencing data, Oct 11-14, 2021

Language:HTMLStargazers:0Issues:1Issues:0