leocvml / DSOD-gluon-mxnet

this repo attemps to reproduce DSOD: Learning Deeply Supervised Object Detectors from Scratch use gluon reimplementation

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

DSOD-gluon-mxnet

this repo attemps to reproduce DSOD: Learning Deeply Supervised Object Detectors from Scratch use gluon reimplementation

Abstract

The DSOD method is a multi-scale proposal-free detection framework similar to SSD

Train detection model from scratch.

State-of-the-art object objectors rely heavily on the off-the-shelf networks pre-trained on large-scale classification datasets like ImageNet, which incurs learning bias due to the difference on both the loss functions and the category distributions between classification and detection tasks.

quick start (very easy)

1. clone (download)
2. execution 'getpikachu.py' get dataset
3. run 'DSOD.py' your will see result( no optimization)

Requirements

mxnet 1.1.0

Network Arch

####################################################
###
###  num of  channels in the 1st conv,
###  num of layer in 1st conv
###  growth rate,
###  factor in transition layer)
###  num_class  ( class + 1)
###################################################
class DSOD(nn.HybridBlock):
    def __init__(self,stem_filter, num_init_layer, growth_rate, factor,num_class):
        if factor == 0.5:
            self.factor = 2
        else:
            self.factor = 1
        self.num_cls = num_class
        self.sizes = [[.2, .2], [.37,.37],[.45,.45], [.54,.54], [.71,.71], [.88,.88]]  #
        self.ratios = [[1,2,0.5]]*6
        self.num_anchors = len(self.sizes[0]) + len(self.ratios[0]) - 1
        trans1_filter = ((stem_filter * 2) + (num_init_layer * growth_rate) //self.factor )
        super(DSOD, self).__init__()
        self.backbone_fisrthalf = nn.HybridSequential()
        with self.backbone_fisrthalf.name_scope():
            self.backbone_fisrthalf.add(
                stemblock(stem_filter),
                DenseBlcok(6, growth_rate),
                transitionLayer(trans1_filter),
                DenseBlcok(8, growth_rate)

            )
        trans2_filter = ((trans1_filter) + (8 * growth_rate) //self.factor )
        trans3_filter = ((trans2_filter) + (8 * growth_rate) //self.factor )


        self.backbone_secondehalf = nn.HybridSequential()
        with self.backbone_secondehalf.name_scope():
            self.backbone_secondehalf.add(
                transitionLayer(trans2_filter),
                DenseBlcok(8, growth_rate),
                transitionLayer(trans3_filter,with_pool=False),
                DenseBlcok(8, growth_rate),
                transitionLayer(256, with_pool=False)
            )
        self.PC_layer = nn.HybridSequential()   # pool -> conv
        numPC_layer =[256,256,128,128,128]
        with self.PC_layer.name_scope():
            for i in range(5):
                self.PC_layer.add(
                    pool_conv(numPC_layer[i]),
                )
        self.CC_layer = nn.HybridSequential() # conv1 -> conv3
        numCC_layer = [256,128,128,128]
        with self.CC_layer.name_scope():
            for i in range(4):
                self.CC_layer.add(
                    conv_conv(numCC_layer[i])
                )

        self.class_predictors = nn.HybridSequential()
        with self.class_predictors.name_scope():
            for _ in range(6):
                self.class_predictors.add(
                        cls_predictor(self.num_anchors,self.num_cls)
                )

        self.box_predictors = nn.HybridSequential()
        with self.box_predictors.name_scope():
            for _ in range(6):
                self.box_predictors.add(
                    bbox_predictor(self.num_anchors)
                )

    def flatten_prediction(self,pred):
        return pred.transpose(axes=(0, 2, 3, 1)).flatten()

    def concat_predictions(self,preds):
        return nd.concat(*preds, dim=1)

    def hybrid_forward(self, F, x):

        anchors, class_preds, box_preds = [], [], []

        scale_1 = self.backbone_fisrthalf(x)

        anchors.append(MultiBoxPrior(
            scale_1, sizes=self.sizes[0], ratios=self.ratios[0]))
        class_preds.append(
            self.flatten_prediction(self.class_predictors[0](scale_1)))
        box_preds.append(
            self.flatten_prediction(self.box_predictors[0](scale_1)))


        out = self.backbone_secondehalf(scale_1)
        PC_1 = self.PC_layer[0](scale_1)
        scale_2 = F.concat(out,PC_1,dim=1)

        anchors.append(MultiBoxPrior(
            scale_2, sizes=self.sizes[1], ratios=self.ratios[1]))
        class_preds.append(
            self.flatten_prediction(self.class_predictors[1](scale_2)))
        box_preds.append(
            self.flatten_prediction(self.box_predictors[1](scale_2)))

        scale_predict = scale_2
        for i in range(1,5):

            PC_Predict = self.PC_layer[i](scale_predict)
            CC_Predict = self.CC_layer[i-1](scale_predict)
            scale_predict = F.concat(PC_Predict, CC_Predict, dim=1)

            anchors.append(MultiBoxPrior(
                scale_predict, sizes=self.sizes[i+1], ratios=self.ratios[i+1]))
            class_preds.append(
                self.flatten_prediction(self.class_predictors[i+1](scale_predict)))
            box_preds.append(
                self.flatten_prediction(self.box_predictors[i+1](scale_predict)))

           # print(scale_predict.shape)

        anchors = self.concat_predictions(anchors)
        class_preds = self.concat_predictions(class_preds)
        box_preds = self.concat_predictions(box_preds)

        class_preds = class_preds.reshape(shape=(0, -1, self.num_cls+1))

        return anchors, class_preds, box_preds

net = nn.HybridSequential()
####################################################
###
###  num of  channels in the 1st conv,
###  num of layer in 1st conv
###  growth rate,
###  factor in transition layer)
###  num_class  ( class + 1)
###################################################
with net.name_scope():
    net.add(
        DSOD(32, 6, 48, 1, 1)  # 64 6 48 1 1 in paper
    )

training dataset

this repo is training on pikachu dataset get pikachu dataset

from mxnet.test_utils import download
import os.path as osp
def verified(file_path, sha1hash):
    import hashlib
    sha1 = hashlib.sha1()
    with open(file_path, 'rb') as f:
        while True:
            data = f.read(1048576)
            if not data:
                break
            sha1.update(data)
    matched = sha1.hexdigest() == sha1hash
    if not matched:
        print('Found hash mismatch in file {}, possibly due to incomplete download.'.format(file_path))
    return matched

url_format = 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/dataset/pikachu/{}'
hashes = {'train.rec': 'e6bcb6ffba1ac04ff8a9b1115e650af56ee969c8',
          'train.idx': 'dcf7318b2602c06428b9988470c731621716c393',
          'val.rec': 'd6c33f799b4d058e82f2cb5bd9a976f69d72d520'}
for k, v in hashes.items():
    fname = k
    target = osp.join('data', fname)
    url = url_format.format(k)
    if not osp.exists(target) or not verified(target, v):
        print('Downloading', target, url)
        download(url, fname=fname, dirname='data', overwrite=True)

how to train your own dataset

first make your dataset to .rec you can check my another repo https://github.com/leocvml/mxnet-im2rec_tutorial

parameter setting

######################################################
##
##
## parameter setting 
## set image size, batchsize
## training( without retrain no inference ) : retrain =False, inference =False, epoch = number of epoch
## training( with retrain and inference after training) : retrain =True, inference =True, inference_Data = name of image, epoch= number
## only inference ( load weighting and inference) : retrain =True, inference =True, inference_data = name of image, epoch = 0
#####################################################
data_shape = 512
batch_size = 4
rgb_mean = nd.array([123, 117, 104])
retrain = True
inference = True
inference_data = 'pikachu.jpg'
epoch = 0

result

i use pikachu dataset(from gluon tutorial) this result didn't optimization you can change anchor size ,Bigger network ,Add hidden layer,Long training time,NMS thresholding , hard negative mining etc

learn more ..

you can also see these tutorial by gluon team, Learn more about SSD and other detection model

chinese: https://zh.gluon.ai/chapter_computer-vision/ssd.html

english: https://gluon.mxnet.io/chapter08_computer-vision/object-detection.html

Note

this result didn't optimization fix bug on 2018/07/30

I appreciate the author's effort in providing a nice experiment in this paper

very thanks mxnet gluon team, they build the very nice tutorial for everyone

About

this repo attemps to reproduce DSOD: Learning Deeply Supervised Object Detectors from Scratch use gluon reimplementation


Languages

Language:Python 100.0%