This repo provides a reference implementation of TGACN as described in paper "Link-aware link prediction over temporal graph by pattern recognition"
Before you run the following command,
- download the datasets and let this folder under the root directory of this project. Name this folder as "data".
- replace "pro_path" in utils/args.py as your own project path.
python main.py --data uci --gpu 1 --recent 6 --para 0 --patience 3 --model 0 --trace_step 35 --use_timec;
python main.py --data social --gpu 1 --recent 6 --para 0 --patience 3 --model 0 --trace_step 35 --use_timec;
python main.py --data enron --gpu 1 --recent 5 --para 4 --patience 3 --model 0 --trace_step 35 --use_timec;
python main.py --data wikipedia --gpu 1 --recent 5 --para 4 --patience 3 --model 0 --trace_step 35 --use_timec;
python main.py --data lastfm --gpu 1 --recent 6 --para 3 --patience 3 --model 0 --trace_step 35 --use_timec;
python main.py --data mooc --gpu 1 --recent 9 --para 0 --use_timee --use_timec --dropout 0.07 --patience 3 --model 0 --trace_step 35