lanzhiwang / ascend-pytorch

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Ascend Extension for PyTorch

Overview

This repository develops the Ascend Extension for PyTorch named torch_npu to adapt Ascend NPU to PyTorch so that developers who use the PyTorch can obtain powerful compute capabilities of Ascend AI Processors.

Ascend is a full-stack AI computing infrastructure for industry applications and services based on Huawei Ascend processors and software. For more information about Ascend, see Ascend Community.

Installation

From Binary

Provide users with wheel package to quickly install torch_npu. Before installing torch_npu, complete the installation of CANN according to Ascend Auxiliary Software. To obtain the CANN installation package, refer to the CANN Installation.

  1. Install PyTorch

Install PyTorch through pip.

For Aarch64:

pip3 install torch==2.3.1

For x86:

pip3 install torch==2.3.1+cpu  --index-url https://download.pytorch.org/whl/cpu
  1. Install torch-npu dependencies

Run the following command to install dependencies.

pip3 install pyyaml
pip3 install setuptools

If the installation fails, use the download link or visit the PyTorch official website to download the installation package of the corresponding version.

OS arch Python version link
x86 Python3.8 link
x86 Python3.9 link
x86 Python3.10 link
aarch64 Python3.8 link
aarch64 Python3.9 link
aarch64 Python3.10 link
  1. Install torch-npu
pip3 install torch-npu==2.3.1

From Source

In some special scenarios, users may need to compile torch-npu by themselves.Select a branch in table Ascend Auxiliary Software and a Python version in table PyTorch and Python Version Matching Table first. The docker image is recommended for compiling torch-npu through the following steps(It is recommended to mount the working path only and avoid the system path to reduce security risks.), the generated .whl file path is ./dist/:

  1. Clone torch-npu

    git clone https://github.com/ascend/pytorch.git -b v2.3.1-6.0.rc2 --depth 1
    
  2. Build Docker Image

    cd pytorch/ci/docker/{arch} # {arch} for X86 or ARM
    docker build -t manylinux-builder:v1 .
    
  3. Enter Docker Container

    docker run -it -v /{code_path}/pytorch:/home/pytorch manylinux-builder:v1 bash
    # {code_path} is the torch_npu source code path
    
  4. Compile torch-npu

    Take Python 3.8 as an example.

    cd /home/pytorch
    bash ci/build.sh --python=3.8
    

Getting Started

Prerequisites

Initialize CANN environment variable by running the command as shown below.

# Default path, change it if needed.
source /usr/local/Ascend/ascend-toolkit/set_env.sh

Quick Verification

You can quickly experience Ascend NPU by the following simple examples.

import torch
import torch_npu

x = torch.randn(2, 2).npu()
y = torch.randn(2, 2).npu()
z = x.mm(y)

print(z)

User Manual

Refer to API of Ascend Extension for PyTorch for more detailed informations.

PyTorch and Python Version Matching Table

PyTorch Version Python Version
PyTorch1.11.0 Python3.7.x(>=3.7.5),Python3.8.x,Python3.9.x,Python3.10.x
PyTorch2.1.0 Python3.8.x,Python3.9.x,Python3.10.x
PyTorch2.2.0 Python3.8.x,Python3.9.x,Python3.10.x
PyTorch2.3.1 Python3.8.x,Python3.9.x,Python3.10.x

Ascend Auxiliary Software

PyTorch Extension versions follow the naming convention {PyTorch version}-{Ascend version}, where the former represents the PyTorch version compatible with the PyTorch Extension, and the latter is used to match the CANN version. The detailed matching is as follows:

CANN Version Supported PyTorch Version Supported Extension Version Github Branch AscendHub Image Version/Name(Link)
CANN 8.0.RC2 2.3.1 2.3.1 v2.3.1-6.0.rc2 -
2.2.0 2.2.0.post2 v2.2.0-6.0.rc2 -
2.1.0 2.1.0.post6 v2.1.0-6.0.rc2 -
1.11.0 1.11.0.post14 v1.11.0-6.0.rc2 -
CANN 8.0.RC2.alpha002 2.3.1 2.3.1rc1 v2.3.1 -
CANN 8.0.RC1 2.2.0 2.2.0 v2.2.0-6.0.rc1 -
2.1.0 2.1.0.post4 v2.1.0-6.0.rc1 -
1.11.0 1.11.0.post11 v1.11.0-6.0.rc1 -
CANN 7.0.0 2.1.0 2.1.0 v2.1.0-5.0.0 -
2.0.1 2.0.1.post1 v2.0.1-5.0.0 -
1.11.0 1.11.0.post8 v1.11.0-5.0.0 -
CANN 7.0.RC1 2.1.0 2.1.0.rc1 v2.1.0-5.0.rc3 -
2.0.1 2.0.1 v2.0.1-5.0.rc3 -
1.11.0 1.11.0.post4 v1.11.0-5.0.rc3 -
CANN 6.3.RC3.1 1.11.0 1.11.0.post3 v1.11.0-5.0.rc2.2 -
CANN 6.3.RC3 1.11.0 1.11.0.post2 v1.11.0-5.0.rc2.1 -
CANN 6.3.RC2 2.0.1 2.0.1.rc1 v2.0.1-5.0.rc2 -
1.11.0 1.11.0.post1 v1.11.0-5.0.rc2 23.0.RC1-1.11.0
1.8.1 1.8.1.post2 v1.8.1-5.0.rc2 23.0.RC1-1.8.1
CANN 6.3.RC1 1.11.0 1.11.0 v1.11.0-5.0.rc1 -
1.8.1 1.8.1.post1 v1.8.1-5.0.rc1 -
CANN 6.0.1 1.5.0 1.5.0.post8 v1.5.0-3.0.0 22.0.0
1.8.1 1.8.1 v1.8.1-3.0.0 22.0.0-1.8.1
1.11.0 1.11.0.rc2(beta) v1.11.0-3.0.0 -
CANN 6.0.RC1 1.5.0 1.5.0.post7 v1.5.0-3.0.rc3 22.0.RC3
1.8.1 1.8.1.rc3 v1.8.1-3.0.rc3 22.0.RC3-1.8.1
1.11.0 1.11.0.rc1(beta) v1.11.0-3.0.rc3 -
CANN 5.1.RC2 1.5.0 1.5.0.post6 v1.5.0-3.0.rc2 22.0.RC2
1.8.1 1.8.1.rc2 v1.8.1-3.0.rc2 22.0.RC2-1.8.1
CANN 5.1.RC1 1.5.0 1.5.0.post5 v1.5.0-3.0.rc1 22.0.RC1
1.8.1 1.8.1.rc1 v1.8.1-3.0.rc1 -
CANN 5.0.4 1.5.0 1.5.0.post4 2.0.4.tr5 21.0.4
CANN 5.0.3 1.8.1 1.5.0.post3 2.0.3.tr5 21.0.3
CANN 5.0.2 1.5.0 1.5.0.post2 2.0.2.tr5 21.0.2

Pipeline Status

Due to the asynchronous development mechanism of upstream and downstream, incompatible modifications in upstream may cause some functions of torch_npu to be unavailable (only upstream and downstream development branches are involved, excluding stable branches). Therefore, we built a set of daily tasks that make it easy to detect relevant issues in time and fix them within 48 hours (under normal circumstances), providing users with the latest features and stable quality.

OS CANN Version(Docker Image) Upstream Branch Downstream Branch Period Status
openEuler 22.03 SP2 CANN 7.1 main master UTC 1200 daily Ascend NPU

Suggestions and Communication

Everyone is welcome to contribute to the community. If you have any questions or suggestions, you can submit Github Issues. We will reply to you as soon as possible. Thank you very much.

Branch Maintenance Policies

The version branches of AscendPyTorch have the following maintenance phases:

Status Duration Description
Planning 1-3 months Plan features.
Development 3 months Develop features.
Maintained 6-12 months Allow the incorporation of all resolved issues and release the version, Different versions of PyTorch adopt varying support policies. The maintenance periods for Regular Releases and Long-Term Support versions are 6 months and 12 months, respectively.
Unmaintained 0-3 months Allow the incorporation of all resolved issues. No dedicated maintenance personnel are available. No version will be released.
End Of Life (EOL) N/A Do not accept any modification to a branch.

PyTorch Maintenance Policies

PyTorch Maintenance Policies Status Launch Date Subsequent Status EOL Date
2.3.1 Regular Release Maintained 2024/06/06 Unmaintained 2024-12-06 estimated
2.2.0 Regular Release Maintained 2024/04/01 Unmaintained 2024-10-15 estimated
2.1.0 Long Term Support Maintained 2023/10/15 Unmaintained 2024-10-15 estimated
2.0.1 Regular Release EOL 2023/7/19 2024/3/14
1.11.0 Long Term Support Maintained 2023/4/19 Unmaintained 2024-4-19 estimated
1.8.1 Long Term Support EOL 2022/4/10 2023/4/10
1.5.0 Long Term Support EOL 2021/7/29 2022/7/29

Reference Documents

For more detailed information on installation guides, model migration, training/inference tutorials, and API lists, please refer to the Ascend Extension for PyTorch on the HiAI Community.

Document Name Document Link
Installation Guide link
Network Model Migration and Training link
Operator Adaptation link
API List (PyTorch and Custom Interfaces) link

License

Ascend Extension for PyTorch has a BSD-style license, as found in the LICENSE file.

About

License:Other


Languages

Language:Python 87.5%Language:C++ 12.2%Language:CMake 0.1%Language:Shell 0.1%Language:C 0.0%Language:Dockerfile 0.0%