In this work, we introduce a model architecture, [U-FNO] (https://www.sciencedirect.com/science/article/pii/S0309170822000562), for solving a dynamic CO2-water multiphase flow problem in the context of carbon capture and storage (CCS). The figure below shows that schematic of U-FNO, where we enhances the experssiveness of Fourier Neural Operator (FNO) by appending a mini U-Net path to the Fourier layer.
The data set is available at: https://drive.google.com/drive/folders/1fZQfMn_vsjKUXAfRV0q_gswtl8JEkVGo?usp=sharing
- input:
sg_train_a.pt
, output:sg_train_u.pt
- input:
dP_train_a.pt
, output:dP_train_u.pt
- input:
sg_val_a.pt
, output:sg_val_u.pt
- input:
dP_train_a.pt
, output:dP_train_u.pt
- input:
sg_test_a.pt
, output:sg_test_u.pt
- input:
dP_test_a.pt
, output:dP_test_u.pt
The pre-trained models is available at: https://drive.google.com/drive/folders/1eHTGITZUM55NokoWqaPSzLRoJMIoJQoD?usp=sharing
@article{wen2022u,
title={U-FNO--An enhanced Fourier neural operator-based deep-learning model for multiphase flow},
author={Wen, Gege and Li, Zongyi and Azizzadenesheli, Kamyar and Anandkumar, Anima and Benson, Sally M},
journal={Advances in Water Resources},
pages={104180},
year={2022},
publisher={Elsevier}
}