Unofficial re-implementation of InstaGAN (https://openreview.net/pdf?id=ryxwJhC9YX) with PyTorch
- PyTorch==1.3.1
Learning InstaGAN requires annotation information on a per-instance basis. In this repository, The format of the annotations should follow the COCO dataset.
To get COCO dataset, run get_dataset.py
CAUTION: By this script, you will download a large amount of image data (> 18GB).
$ python get_dataset.py
After execution, a checkpoint directory with the following structure will be created.
├── data
│ ├── instances_train2017.json
│ └── train2017
│ ├── 000000000009.jpg
│ ├── 000000000025.jpg
│ ├── ...
run train.py
$ python train.py params.yaml
After execution, a checkpoint directory with the following structure will be created to store the learning results.
├── result
│ └── yymmdd_HHMM_[domain X]2[domain Y]
│ ├── params.json
│ ├── weights
│ └── samples
$ python resume_train.py [path to checkpoint directory]