My 207th🥈solution for Kaggle M5 Forecasting Competition (https://www.kaggle.com/c/m5-forecasting-accuracy/overview)
The detail of the solution: https://github.com/kiccho1101/paper/blob/master/Kaggle/M5.md
- Rolling mean, std
- Rolling grouped mean, std
- Shift
- Discount rate
- Event strength
- catch22 features
- Target encoding features
- etc...
2020-04-02 0.64561 (first submission)
2020-04-04 0.63581
2020-04-04 0.55002 (thanks to dark magic https://www.kaggle.com/kyakovlev/m5-dark-magic)
2020-04-05 0.53538
2020-04-10 0.51792
2020-04-11 0.50514
2020-04-11 0.48833 (thanks to iterative prediction https://www.kaggle.com/kneroma/m5-first-public-notebook-under-0-50)
2020-04-12 0.48273
2020-04-23 0.47101
2020-04-24 0.46930
pipenv install --dev --skip-lock
sh install_lightgbm_2.3.2.sh
Unzip it and put the csv files in ./kaggle_m5_forecasting/ directory.
luigid # localhost:8082
mlflow ui # localhost:5000
pipenv run python main.py m5.LGBMCrossValidation