Khoi Hoang (khoih-prog)

khoih-prog

Geek Repo

Location:Mississauga, Ontario, Canada

Github PK Tool:Github PK Tool

Khoi Hoang's repositories

EthernetWebServer_STM32

This is simple yet complete WebServer library for STM32 boards running built-in Ethernet LAN8742A (Nucleo-144, Discovery), ENC28J60 or W5x00 Ethernet shields. The functions are similar and compatible to ESP8266/ESP32 WebServer libraries to make life much easier to port sketches from ESP8266/ESP32. Ethernet_Generic library is used as default for W5x00. Now W5x00 can use any custom hardware / software SPI

Language:C++License:MITStargazers:82Issues:8Issues:7

WebServer_WT32_ETH01

Simple Ethernet WebServer, HTTP/HTTPS Client wrapper library for WT32_ETH01 boards using LAN8720 Ethernet. The WebServer supports HTTP(S) GET and POST requests, provides argument parsing, handles one client at a time. It provides HTTP(S), MQTT(S) Client and supports WebServer serving from LittleFS/SPIFFS. Now supporting ESP32 core v2.0.0+

Language:CLicense:GPL-3.0Stargazers:62Issues:8Issues:5

TimerInterrupt_Generic

This library enables you to use Interrupt from Hardware Timers on supported Arduino boards such as AVR, ESP8266, ESP32, SAMD, SAM DUE, nRF52, Teensy, etc. These Hardware Timers, using Interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's mandatory if you need to measure some data requiring better accuracy. It now supports 16 ISR-based Timers, while consuming only 1 Hardware Timer. Timers' interval is very long (ulong millisecs). The most important feature is they're ISR-based Timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks.

Language:C++License:MITStargazers:38Issues:6Issues:9

SAMD_TimerInterrupt

This library enables you to use Interrupt from Hardware Timers on an SAMD-based board. These SAMD Hardware Timers, using Interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's mandatory if you need to measure some data requiring better accuracy. It now supports 16 ISR-based Timers, while consuming only 1 Hardware Timer. Timers' interval is very long (ulong millisecs). The most important feature is they're ISR-based Timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. SAMD21 now can use 6 Timers

Language:C++License:MITStargazers:34Issues:5Issues:14

STM32_TimerInterrupt

This library enables you to use Interrupt from Hardware Timers on an STM32F/L/H/G/WB/MP1-based board. These STM32F/L/H/G/WB/MP1 Hardware Timers, using Interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's mandatory if you need to measure some data requiring better accuracy. It now supports 16 ISR-based Timers, while consuming only 1 Hardware Timer. Timers' interval is very long (ulong millisecs). The most important feature is they're ISR-based Timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks.

Language:C++License:MITStargazers:32Issues:5Issues:6

RPI_PICO_TimerInterrupt

This library enables you to use Interrupt from Hardware Timers on RP2040-based boards such as RASPBERRY_PI_PICO. These RPI_PICO_TimerInterrupt Hardware Timers, using Interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's mandatory if you need to measure some data requiring better accuracy. It now supports 16 ISR-based Timers, while consuming only 1 Hardware Timer. Timers' interval is very long (ulong millisecs). The most important feature is they're ISR-based Timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks.

Language:C++License:MITStargazers:30Issues:4Issues:4

ESP32_PWM

This library enables you to use Interrupt from Hardware Timers on an ESP32, ESP32_S2 or ESP32_C3-based board to create and output PWM to pins. It now supports 16 ISR-based synchronized PWM channels, while consuming only 1 Hardware Timer. PWM interval can be very long (uint32_t millisecs). The most important feature is they're ISR-based PWM channels. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. These hardware PWM channels, using interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's necessary if you need to measure some data requiring better accuracy.

Language:CLicense:MITStargazers:22Issues:4Issues:5

NRF52_TimerInterrupt

This library enables you to use Interrupt from Hardware Timers on an nRF52-based board. These nRF52 Hardware Timers, using Interrupt, still work even if other functions are blocking. Moreover, they are much more precise than other software timers using millis() or micros(). Now supports `Sparkfun Pro nRF52840 Mini`

Language:C++License:MITStargazers:19Issues:4Issues:2

ESP8266_PWM

This library enables you to use Interrupt from Hardware Timers on an ESP8266-based board to create and output PWM to pins. It now supports 16 ISR-based synchronized PWM channels, while consuming only 1 Hardware Timer. PWM interval can be very long (uint32_t millisecs). The most important feature is they're ISR-based PWM channels. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. These hardware PWM channels, using interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's necessary if you need to measure some data requiring better accuracy

Language:CLicense:MITStargazers:16Issues:4Issues:3

Portenta_H7_TimerInterrupt

This library enables you to use Interrupt from Hardware Timers on an STM32H7-based Portenta_H7 board. It now supports 16 ISR-based timers, while consuming only 1 Hardware Timer. Timers' interval is very long (ulong millisecs). The most important feature is they're ISR-based timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. These hardware timers, using interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's necessary if you need to measure some data requiring better accuracy

Language:CLicense:MITStargazers:15Issues:6Issues:2

NRF52_MBED_TimerInterrupt

This library enables you to use Interrupt from Hardware Timers on an NRF52-based board using mbed-RTOS such as Nano-33-BLE. These nRF52 Hardware Timers, using Interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's mandatory if you need to measure some data requiring better accuracy. It now supports 16 ISR-based Timers, while consuming only 1 Hardware Timer. Timers' interval is very long (ulong millisecs). The most important feature is they're ISR-based Timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks.

Language:C++License:MITStargazers:14Issues:2Issues:6

MBED_RPI_PICO_TimerInterrupt

This library enables you to use Interrupt from Hardware Timers on RP2040-based boards such as Nano_RP2040_Connect, RASPBERRY_PI_PICO. These MBED_RPI_PICO_TimerInterrupt Hardware Timers, using Interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's mandatory if you need to measure some data requiring better accuracy. It now supports 16 ISR-based Timers, while consuming only 1 Hardware Timer. Timers' interval is very long (ulong millisecs). The most important feature is they're ISR-based Timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks.

Language:CLicense:MITStargazers:10Issues:3Issues:4

Teensy_TimerInterrupt

This library enables you to use Interrupt from Hardware Timers on an Teensy-based board such as Teensy 4.x, 3.x, LC, 2.0, etc. These Teensy Hardware Timers, using Interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's mandatory if you need to measure some data requiring better accuracy. It now supports 16 ISR-based Timers, while consuming only 1 Hardware Timer. Timers' interval is very long (ulong millisecs). The most important feature is they're ISR-based Timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks.

Language:C++License:MITStargazers:10Issues:2Issues:3

AVR_Slow_PWM

This library enables you to use ISR-based PWM channels on AVR-based boards, such as Mega-2560, UNO,Nano, Leonardo, etc., to create and output PWM any GPIO pin. It now supports 16 ISR-based PWM channels, while consuming only 1 Hardware Timer. PWM channel interval can be very long (ulong microsecs / millisecs). The most important feature is they're ISR-based PWM channels, supporting lower PWM frequencies with suitable accuracy. Their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. These ISR-based PWMs, still work even if other software functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software-based PWM using millis() or micros(). That's necessary if you need to control devices requiring high precision

Language:CLicense:MITStargazers:7Issues:2Issues:0

megaAVR_TimerInterrupt

This library enables you to use Interrupt from Hardware Timers on an ATmega4809-based board, such as Arduino UNO WiFi Rev2, AVR_NANO_EVERY, etc. It now supports 16 ISR-based timers, while consuming only 1 hardware Timer. Timers' interval is very long (ulong millisecs). The most important feature is they're ISR-based timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks.

Language:CLicense:MITStargazers:5Issues:2Issues:4

ATtiny_TimerInterrupt

This library enables you to use Interrupt from Hardware Timers on Arduino AVR ATtiny-based boards (ATtiny3217, etc.) using megaTinyCore. These ATtiny Hardware Timers, using Interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That is mandatory if you need to measure some data requiring better accuracy. It now supports 16 ISR-based Timers, while consuming only 1 Hardware Timer. Timers interval is very long (ulong millisecs). The most important feature is they are ISR-based Timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks

Language:CLicense:MITStargazers:3Issues:2Issues:0

MBED_RP2040_Slow_PWM

This library enables you to use ISR-based PWM channels on RP2040-based boards, such as Nano_RP2040_Connect, RASPBERRY_PI_PICO, with Arduino-mbed (mbed_nano or mbed_rp2040) core to create and output PWM any GPIO pin. The most important feature is they're ISR-based PWM channels, supporting lower PWM frequencies with suitable accuracy. Their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. These ISR-based PWMs, still work even if other software functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software-based PWM using millis() or micros(). That's necessary if you need to control devices requiring high precision

Language:CLicense:MITStargazers:3Issues:3Issues:0

RTL8720_TimerInterrupt

This library enables you to use Interrupt from Hardware Timers on an RTL8720-based board. These RTL8720 Hardware Timers, using Interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's mandatory if you need to measure some data requiring better accuracy. It now supports 16 ISR-based Timers, while consuming only 1 Hardware Timer. Timers' interval is very long (ulong millisecs). The most important feature is they're ISR-based Timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks.

Language:CLicense:MITStargazers:3Issues:2Issues:0

SAMD_Slow_PWM

This library enables you to use Hardware Timers on SAMD21/SAMD51 boards to create and output PWM to pins. These PWM channels, using SAMD21/SAMD51 Hardware Timers, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's mandatory if you need to measure some data requiring better accuracy. It now supports 16 ISR-based Timers, while consuming only 1 Hardware Timer. Timers interval is very long (ulong millisecs). The most important feature is they're ISR-based Timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. Max PWM frequency is limited at 1000Hz

Language:C++License:MITStargazers:3Issues:3Issues:4

SAMDUE_TimerInterrupt

This library enables you to use Interrupt from Hardware Timers on an SAM-DUE-based board. These SAM-DUE Hardware Timers, using Interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's mandatory if you need to measure some data requiring better accuracy. It now supports 16 ISR-based Timers, while consuming only 1 Hardware Timer. Timers' interval is very long (ulong millisecs). The most important feature is they're ISR-based Timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks.

Language:C++License:MITStargazers:3Issues:2Issues:0

Teensy_Slow_PWM

This library enables you to use ISR-based PWM channels on Teensy boards, such as Teensy 2.x, Teensy LC, Teensy 3.x, Teensy 4.x, Teensy MicroMod, etc., to create and output PWM any GPIO pin. It now supports 16 ISR-based PWM channels, while consuming only 1 Hardware Timer. PWM channel interval can be very long (ulong microsecs / millisecs). The most important feature is they're ISR-based PWM channels, supporting lower PWM frequencies with suitable accuracy. Their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. These ISR-based PWMs, still work even if other software functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software-based PWM using millis() or micros(). That's necessary if you need to control devices requiring high precision

Language:C++License:MITStargazers:3Issues:3Issues:1

STM32_Slow_PWM

This library enables you to use Hardware Timers on STM32F/L/H/G/WB/MP1 boards to create and output PWM to pins. The most important feature is they're purely hardware-based PWM channels. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. These hardware timers, using interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's necessary if you need to measure some data requiring better accuracy. PWM feature can now be used. Max PWM frequency is limited at 1000Hz

Language:CLicense:MITStargazers:2Issues:2Issues:0

ATmega_Slow_PWM

This library enables you to use ISR-based PWM channels on AVR ATmega164, ATmega324, ATmega644, ATmega1284 with MCUdude MightyCore, to create and output PWM any GPIO pin. It now supports 16 ISR-based PWM channels, while consuming only 1 Hardware Timer. PWM channel interval can be very long (ulong microsecs / millisecs). The most important feature is they're ISR-based PWM channels, supporting lower PWM frequencies with suitable accuracy. Their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. These ISR-based PWMs, still work even if other software functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software-based PWM using millis() or micros(). That's necessary if you need to control devices requiring high precision. Now you can change the PWM settings on-the-fly

Language:CLicense:MITStargazers:1Issues:2Issues:0

megaAVR_Slow_PWM

This library enables you to use ISR-based PWM channels on Arduino megaAVR boards, such as UNO WiFi Rev2, AVR_Nano_Every, etc., to create and output PWM any GPIO pin. It now supports 16 ISR-based PWM channels, while consuming only 1 Hardware Timer. PWM channel interval can be very long (ulong microsecs / millisecs). The most important feature is they're ISR-based PWM channels, supporting lower PWM frequencies with suitable accuracy. Their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. These ISR-based PWMs, still work even if other software functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software-based PWM using millis() or micros(). That's necessary if you need to control devices requiring high precision. Now supporting MegaCoreX.

Language:CLicense:MITStargazers:1Issues:2Issues:1

Portenta_H7_Slow_PWM

This library enables you to use Hardware Timers on an STM32H7-based Portenta_H7 board to create and output PWM to pins. It now supports 16 ISR-based PWM-channels, while consuming only 1 Hardware Timer. They are much more precise (certainly depending on clock frequency accuracy) than other software PWM using millis() or micros(). That's mandatory if you need to use in applications requiring better accuracy. PWM-channel interval can very long (ulong millisecs). The most important feature is they're ISR-based PWM-channels. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. These hardware PWM channels, using interrupt, still work even if other functions are blocking. Max PWM frequency is limited at 1000Hz

Language:CLicense:MITStargazers:1Issues:2Issues:0

Dx_TimerInterrupt

This library enables you to use Interrupt from Hardware Timers on Arduino AVRDx-based boards (AVR128Dx, AVR64Dx, AVR32Dx, etc.) using DxCore. These AVRDx Hardware Timers, using Interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That is mandatory if you need to measure some data requiring better accuracy. It now supports 16 ISR-based Timers, while consuming only 1 Hardware Timer. Timers interval is very long (ulong millisecs). The most important feature is they are ISR-based Timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks

Language:CLicense:MITStargazers:0Issues:2Issues:0

ATmega_TimerInterrupt

This library enables you to use Interrupt from Hardware Timers on an AVR ATmega164, ATmega324, ATmega644, ATmega1284 with MCUdude MightyCore. It now supports 16 ISR-based timers, while consuming only 1 Hardware Timer. Timers interval is very long (ulong millisecs). The most important feature is they are ISR-based timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks

Language:CLicense:MITStargazers:0Issues:2Issues:0

ATtiny_Slow_PWM

This library enables you to use ISR-based PWM channels on Arduino AVR ATtiny-based boards (ATtiny3217, etc.), using megaTinyCore, to create and output PWM any GPIO pin. It now supports 64 ISR-based PWM channels, while consuming only 1 Hardware Timer. PWM channel interval can be very long (ulong microsecs / millisecs). The most important feature is they're ISR-based PWM channels, supporting lower PWM frequencies with suitable accuracy. Their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. These ISR-based PWMs, still work even if other software functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software-based PWM using millis() or micros(). That's necessary if you need to control devices requiring high precision. Now you can change the PWM settings on-the-fly

Language:CLicense:MITStargazers:0Issues:2Issues:0

nRF52_MBED_Slow_PWM

This library enables you to use ISR-based PWM channels on an nRF52-based board using Arduino-mbed mbed_nano core such as Nano-33-BLE to create and output PWM any GPIO pin. It now supports 16 ISR-based PWM channels, while consuming only 1 Hardware Timer. PWM channel interval can be very long (ulong microsecs / millisecs). The most important feature is they're ISR-based PWM channels, supporting lower PWM frequencies with suitable accuracy. Their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. These ISR-based PWMs, still work even if other software functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software-based PWM using millis() or micros(). That's necessary if you need to control devices requiring high precision

Language:CLicense:MITStargazers:0Issues:2Issues:0

SAMDUE_Slow_PWM

This library enables you to use ISR-based PWM channels on an Arduino SAM_DUE board to create and output PWM any GPIO pin. It now supports 16 ISR-based PWM channels, while consuming only 1 Hardware Timer. PWM channel interval can be very long (ulong microsecs / millisecs). The most important feature is they're ISR-based PWM channels, supporting lower PWM frequencies with suitable accuracy. Their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks. These ISR-based PWMs, still work even if other software functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software-based PWM using millis() or micros(). That's necessary if you need to control devices requiring high precision

Language:CLicense:MITStargazers:0Issues:2Issues:0