kayodeakanni / MemDPC

[ECCV'20 Spotlight] Memory-augmented Dense Predictive Coding for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Memory-augmented Dense Predictive Coding for Video Representation Learning

This repository contains the implementation of Memory-augmented Dense Predictive Coding (MemDPC).

Links: [arXiv] [PDF] [Video] [Project page]

arch

Preparation

This repository is implemented in PyTorch 1.2, but newer version should also work. Additionally, it needs cv2, joblib, tqdm, tensorboardX.

For the dataset, please follow the instructions here.

Self-supervised training (MemDPC)

  • Change directory cd memdpc/

  • Train MemDPC on UCF101 rgb stream

python main.py --gpu 0,1 --net resnet18 --dataset ucf101 --batch_size 16 --img_dim 128 --epochs 500
  • Train MemDPC on Kinetics400 rgb stream
python main.py --gpu 0,1,2,3 --net resnet34 --dataset k400 --batch_size 16 --img_dim 224 --epochs 200

Evaluation

Finetune entire network for action classification on UCF101: arch

Code comming soon.

DPC-pretrained weights

Comming soon.

Citation

If you find the repo useful for your research, please consider citing our paper:

@InProceedings{Han20,
  author       = "Tengda Han and Weidi Xie and Andrew Zisserman",
  title        = "Memory-augmented Dense Predictive Coding for Video Representation Learning",
  booktitle    = "European Conference on Computer Vision",
  year         = "2020",
}

For any questions, welcome to create an issue or contact Tengda Han (htd@robots.ox.ac.uk).

About

[ECCV'20 Spotlight] Memory-augmented Dense Predictive Coding for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.


Languages

Language:Python 100.0%