This repository contains the implementation of Memory-augmented Dense Predictive Coding (MemDPC).
Links: [arXiv] [PDF] [Video] [Project page]
This repository is implemented in PyTorch 1.2, but newer version should also work. Additionally, it needs cv2, joblib, tqdm, tensorboardX.
For the dataset, please follow the instructions here.
-
Change directory
cd memdpc/
-
Train MemDPC on UCF101 rgb stream
python main.py --gpu 0,1 --net resnet18 --dataset ucf101 --batch_size 16 --img_dim 128 --epochs 500
- Train MemDPC on Kinetics400 rgb stream
python main.py --gpu 0,1,2,3 --net resnet34 --dataset k400 --batch_size 16 --img_dim 224 --epochs 200
Finetune entire network for action classification on UCF101:
Code comming soon.
Comming soon.
If you find the repo useful for your research, please consider citing our paper:
@InProceedings{Han20,
author = "Tengda Han and Weidi Xie and Andrew Zisserman",
title = "Memory-augmented Dense Predictive Coding for Video Representation Learning",
booktitle = "European Conference on Computer Vision",
year = "2020",
}
For any questions, welcome to create an issue or contact Tengda Han (htd@robots.ox.ac.uk).