The sender and receiver share a secret key, which is used by chacha6
to hash
the same input into identical pseudo-random numbers. These pseudo-random
numbers are used in obfuscation.
- The first 16 bytes of WG message is obfuscated.
- The mac2 field is also obfuscated, if it is all zeros.
- Padding WG message with random long random bytes.
- Drop keepalive message with 80% probability.
- Change the Diffserv field to zero.
Chacha6
is chosen for its speed, as the goal is not encryption.
Tested working on Alpine linux kernel 5.15, CentOS 7, Debian 10/11/12 and openSUSE 15.5.
- Alpine: alpine-sdk iptables-dev linux-lts-dev or linux-virt-dev
- CentOS 7: iptables-devel kernel-devel
- Debian 10/11/12 : autoconf libtool libxtables-dev linux-headers pkg-config
- openSUSE 15: autoconf automake gcc kernel-default-devel libtool libxtables-devel make
Build:
./autogen.sh
./configure
make
Install:
sudo make install
One may need run depmod -a && modprobe xt_WGOBFS
to load the kernel module.
By default, openSUSE does not allow unsupported kernel modeule. To override,
create or modify /etc/modprobe.d/10-unsupported-modules.conf
, add the
following line:
allow_unsupported_modules 1
This extension takes two parameters.
--key
for a shared secret between client and server. If a key is a long
string, it will be cut at 32 characters; if a key is short, then it will be
repeated until reaches 32 characters. This 32 characters long string is the key
used by chacha8 hash.
--obfs
or --unobfs
to indicate the operation mode.
Before bring up wg, on client, insert two iptables rules:
iptables -t mangle -I INPUT -p udp -m udp --sport 6789 -j WGOBFS --key mysecretkey --unobfs
iptables -t mangle -I OUTPUT -p udp -m udp --dport 6789 -j WGOBFS --key mysecretkey --obfs
The above rules assuming remote server is listening on port 6789. On server, do the opposite:
iptables -t mangle -I INPUT -p udp -m udp --dport 6789 -j WGOBFS --key mysecretkey --unobfs
iptables -t mangle -I OUTPUT -p udp -m udp --sport 6789 -j WGOBFS --key mysecretkey --obfs
Since this is a Linux kernel module, users on Windows, Mac, or mobile devices will not be able to use it directly. However, a possible workaround is to use it through a relay.
For setting it up on a relay server (assuming default policy for FORWARD chain is ACCEPT):
iptables -t nat -A PREROUTING -p udp -d RELAY_WAN_IP --dport 6789 -j DNAT --to-destination real_wg_server_ip:6789
iptables -t nat -A POSTROUTING -p udp -d real_wg_server_ip --dport 6789 -j MASQUERADE
iptables -t mangle -A FORWARD -p udp -d real_wg_server_ip --dport 6789 -j WGOBFS --key mysecretkey --obfs
iptables -t mangle -A FORWARD -p udp -s real_wg_server_ip --sport 6789 -j WGOBFS --key mysecretkey --unobfs
Windows, Mac or mobile clients then use the IP and port of the relay as WG server endpoint. The setup for the remote WG server is the same as in previous section.
For IPv6, replace iptables
with ip6tables
in rules. It is also necessary to
reduce the MTU of wireguard interface, for example, set the MTU to 1280.
It is necessary to clamp TCP MSS on TCP traffic over tunnel. Symptoms of TCP MSS problems including HTTP not working on some websites, ssh works but scp doesn’t work.
iptables -t mangle -A FORWARD -p tcp --tcp-flags SYN,RST SYN -j TCPMSS --clamp-mss-to-pmtu
Test in two Alpine linux VMs on same host. Each VM has 1 CPU and 256M RAM. Iperf3 over wg reports 1.1Gbits/sec without obfuscation, 950Mbits/sec with obfuscation.
GPL v2