jppgks / proc-gen

Framework for Neural Procedure Generation (HICSS '21)

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

proc-gen: Neural Procedure Generation

This repository contains code to reproduce the results of our paper Neural Machine Translation for Conditional Generation of Novel Procedures as published in the 54th Hawaii International Conference on System Sciences (HICSS '21). [citation]

It contains the proc-gen Python package which provides a wrapper over Fairseq, introducing helpers for generating procedures.

Installation

tl;dr

docker build -t proc-gen .

Setup conda environment

conda create -n proc-gen python=3.8.5
conda activate proc-gen

Install Python package

Besides installing the proc_gen Python package, this also adds a number of pg-* command line utilities (see ./bin) to the PATH, used further on in this documentation.

git clone https://github.com/jppgks/proc-gen.git && cd ./proc-gen
pip install -e .
# (optional) pip install -e .[mlflow]

proc_gen uses Fairseq under the hood. Fairseq provides optional installation instructions for e.g. faster training.

Vocabulary and encoder

Download GPT2-BPE English vocabulary and encoder:

BPE_DIR=$(pwd)/bpe-files
pg-bpe-download ${BPE_DIR}

Data

Download Recipe1M dataset

Register, understand the terms of use for the dataset and download here. We only need the "Layers" (recipe1M_layers.tar.gz) file.

Untar the required data file:

DATA_DIR=/tmp/data # path to directory for storing untarred Recipe1M data
mkdir -p ${DATA_DIR}
tar -xvf recipe1M_layers.tar.gz layer1.json --directory ${DATA_DIR}

Usage

Data preprocessing

PROCESSED_DATA_DIR=/tmp/out # path to directory for storing processed data
CKPT_DIR=/tmp/ckpts # path to directory for storing checkpoints
RESULTS_DIR=/tmp/results # path to directory for storing results

DATASET={Recipe1M|dummy}
PROBLEM=Requirements_TO_TargetProductAndTasks # see all available problem types in proc_gen/problems.py
MODEL_TYPE=fairseq # only fairseq is currently supported

docker run \
  -v ${DATA_DIR}:/data/procgen/v1/source/Recipe1M \
  -v ${PROCESSED_DATA_DIR}:/data/procgen/v1/processed \
  proc-gen:latest \
    pg-prepare-data \
      --input-path /data/procgen/v1/source/Recipe1M/layer1.json \
      --dataset ${DATASET} \
      --problem ${PROBLEM} \
      --model-type ${MODEL_TYPE} \
      --output-dir /data/procgen/v1/processed \
      [--bpe-dir ${BPE_DIR}] \
      [--no-tokenize]

Model training

# Task setup
MODEL_ARCH={lstm|conv|transformer|bart|gpt2}
TASK={translation|denoising|language_modeling}

# List available GPU devices
export CUDA_VISIBLE_DEVICES=0[,1[,2[,..]]]

docker run --gpus all \
  -v ${PROCESSED_DATA_DIR}:/data/procgen/v1/processed \
  -v ${CKPT_DIR}:/ckpts \
  proc-gen:latest \
    pg-train-model \
      --data_dir /data/procgen/v1/processed \
      --dataset ${DATASET} \
      --problem ${PROBLEM} \
      --model_type ${MODEL_TYPE} \
      --model_arch ${MODEL_ARCH} \
      --task ${TASK} \
      [--warm_start] \
      [--log_mlflow]

Distributed training (data parallel)

See the torch.distributed.launch documentation for more information about the tool used below to spawn distributed training processes (across nodes).

# Distributed training setup
read -a ALL_HOSTS <<< "<space separated list of hostnames>"
WORLD_SIZE=${#ALL_HOSTS[@]}

NUM_GPUS_PER_NODE=<number of gpus available on each host>
MASTER_ADDRESS=<IP of master host>
MASTER_PORT=1234

# Launch workers
for (( i=1; i<$WORLD_SIZE; i++ )); do
  NODE_RANK=$i
  WORKER_NODE=${ALL_HOSTS[$i]}
  ssh -f $WORKER_NODE docker run --gpus all \
    -v ${PROCESSED_DATA_DIR}:/data/procgen/v1/processed \
    -v ${CKPT_DIR}:/ckpts \
    proc-gen:latest \
      NCCL_DEBUG=WARN CUDA_VISIBLE_DEVICES=$(seq -s, 0 $((${NUM_GPUS_PER_NODE}-1))) /opt/conda/bin/python -m torch.distributed.launch \
        --nproc_per_node=${NUM_GPUS_PER_NODE} \
        --nnodes=${WORLD_SIZE} \
        --node_rank=${NODE_RANK} \
        --master_addr=${MASTER_ADDRESS} \
        --master_port=${MASTER_PORT} \
        /opt/conda/bin/pg-train-model \
          --data_dir /data/procgen/v1/processed \
          --dataset ${DATASET} \
          --problem ${PROBLEM} \
          --model_type ${MODEL_TYPE} \
          --model_arch ${MODEL_ARCH} \
          --task ${TASK} \
          [--warm_start]
done
# Launch master
NODE_RANK=0
WORKER_NODE=${ALL_HOSTS[0]}
ssh $WORKER_NODE docker run --gpus all \
  -v ${PROCESSED_DATA_DIR}:/data/procgen/v1/processed \
  -v ${CKPT_DIR}:/ckpts \
  proc-gen:latest \
    NCCL_DEBUG=WARN CUDA_VISIBLE_DEVICES=$(seq -s, 0 $((${NUM_GPUS_PER_NODE}-1))) /opt/conda/bin/python -m torch.distributed.launch \
      --nproc_per_node=${NUM_GPUS_PER_NODE} \
      --nnodes=${WORLD_SIZE} \
      --node_rank=${NODE_RANK} \
      --master_addr=${MASTER_ADDRESS} \
      --master_port=${MASTER_PORT} \
      /opt/conda/bin/pg-train-model \
        --data_dir /data/procgen/v1/processed \
        --dataset ${DATASET} \
        --problem ${PROBLEM} \
        --model_type ${MODEL_TYPE} \
        --model_arch ${MODEL_ARCH} \
        --task ${TASK} \
        [--warm_start]

Generating predictions

docker run --gpus all \
  -v ${PROCESSED_DATA_DIR}:/data/procgen/v1/processed \
  -v ${CKPT_DIR}:/ckpts \
  -v ${RESULTS_DIR}:/results \
  proc-gen:latest \
    pg-generate-predictions \
      --data_dir /data/procgen/v1/processed \
      --dataset ${DATASET} \
      --problem ${PROBLEM} \
      --model_type ${MODEL_TYPE} \
      --model_arch ${MODEL_ARCH}

Interactive generation

docker run -it \
  -v ${PROCESSED_DATA_DIR}:/data/procgen/v1/processed \
  -v ${CKPT_DIR}:/ckpts \
  -v ${RESULTS_DIR}:/results \
  proc-gen:latest \
    fairseq-interactive \
      /data/procgen/v1/processed/${PROBLEM}/${DATASET}/${MODEL_TYPE}/data-bin/tokenized/ \
      --path /ckpts/procgen/v1/processed/${PROBLEM}/${DATASET}/${MODEL_TYPE}/ckpts-transformer_iwslt_de_en/checkpoint_best.pt

Evaluation

docker run \
  -v ${PROCESSED_DATA_DIR}:/data/procgen/v1/processed \
  -v ${RESULTS_DIR}:/results \
  proc-gen:latest \
    pg-evaluate-model \
        --data_dir ${WORKDIR}/data/procgen/v1/processed \
        --dataset ${DATASET} \
        --problem ${PROBLEM} \
        --model_type ${MODEL_TYPE} \
        --model_arch ${MODEL_ARCH}

Citation

@inproceedings{geluykens2021procgen,
  title={Neural Machine Translation for Conditional Generation of Novel Procedures},
  author={Geluykens, Joppe and Mitrovi{\'c}, Sandra and Ortega V{\'a}zquez, Carlos Eduardo and Laino, Teodoro and Vaucher, Alain and De Weerdt, Jochen},
  booktitle={Proceedings of the 54th Hawaii International Conference on System Sciences},
  pages={1091},
  year={2021}
}

About

Framework for Neural Procedure Generation (HICSS '21)

License:MIT License


Languages

Language:Python 96.2%Language:Dockerfile 2.3%Language:Shell 1.5%