- μ£Όλ‘ κ³Όκ±°μ λνλ€μ μ€μ¬μΌλ‘ μ°Έμ¬νμ¬ κ³΅λΆν κΈ°μ λ€μ μ¬μ©νλ κ²μ λͺ©μ μΌλ‘ νκ³ μμ΅λλ€.
- EDA : ν΅κ³λ, Log-histogram, box-plot, wordcloud,barchart
- Preprocessing : μ κ· ννμ, Down Sampling, stopwords, deconstradictions
- Word Representation : TF-IDF, Word2Vec, TF-IDFweighted w2v model
- Dimension Reduction : SVM
- Scaler : Standard Scaler
- Parameter Search : Grid Search CV
- Model Normalizing Methd : Batch Normalization, Dropout
- Model : Logistic Regression, Random Forest,XGBoost, Decision Tree, Wide and Deep
- Stacking : stacking 3 model
- Data Preprocessing : Resizing, Rescaling
- Data Augmentation : Horizontal Flip, Rotation, CutMix
- Train Validation Split : Stratified Classification
- Model : Transfer Learning, EfficientNet, Xception
- Stacking : Logistic Regression
- Optimizer : Adam, Cosine annealing learning rate scheduler
- Metric : Accuracy
π¬π₯°ππ€π»π₯³ππ©βπ«π€‘π¨βπ«π€π€¬π¬π