imnotkk / reinforcement-learning

Implementation of Reinforcement Learning Algorithms. Python, OpenAI Gym, Tensorflow. Exercises and Solutions to accompany Sutton's Book and David Silver's course.

Home Page:http://www.wildml.com/2016/10/learning-reinforcement-learning/

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Overview

This repository provides code, exercises and solutions for popular Reinforcement Learning algorithms. These are meant to serve as a learning tool to complement the theoretical materials from

Each folder in corresponds to one or more chapters of the above textbook and/or course. In addition to exercises and solution each folder also contains a list of learning goals, a brief concept summary, and links to the relevant readings.

All code is written in Python 3 and use RL environments from OpenAI Gym. Advanced techniques use Tensorflow for neural network implementations.

Table of Contents

List of Implemented Algorithms

  • [Dynamic Programming Policy Evaluation](DP/Policy Evaluation Solution.ipynb)
  • [Dynamic Programming Policy Iteration](DP/Policy Iteration Solution.ipynb)
  • [Dynamic Programming Value Iteration](DP/Value Iteration Solution.ipynb)
  • [Monte Carlo Prediction](MC/MC Prediction Solution.ipynb)
  • [Monte Carlo Control with Epsilon-Greedy Policies](MC/MC Control with Epsilon-Greedy Policies Solution.ipynb)
  • [Monte Carlo Off-Policy Control with Importance Sampling](MC/Off-Policy MC Control with Weighted Importance Sampling Solution.ipynb)
  • [SARSA (On Policy TD Learning)](TD/SARSA Solution.ipynb)
  • [Q-Learning (Off Policy TD Learning)](TD/Q-Learning Solution.ipynb)
  • [Q-Learning with Linear Function Approximation](FA/Q-Learning with Value Function Approximation Solution.ipynb)
  • [Deep Q-Learning for Atari Games](DQN/Deep Q Learning Solution.ipynb)
  • [Double Deep-Q Learning for Atari Games](DQN/Double DQN Solution.ipynb)
  • Deep Q-Learning with Prioritized Experience Replay (WIP)
  • [Policy Gradient: REINFORCE with Baseline](PolicyGradient/CliffWalk REINFORCE with Baseline Solution.ipynb)
  • [Policy Gradient: Actor Critic with Baseline](PolicyGradient/CliffWalk Actor Critic Solution.ipynb)
  • [Policy Gradient: Actor Critic with Baseline for Continuous Action Spaces](PolicyGradient/Continuous MountainCar Actor Critic Solution.ipynb)
  • Deterministic Policy Gradients for Continuous Action Spaces (WIP)
  • Deep Deterministic Policy Gradients (DDPG) (WIP)
  • Asynchronous Advantage Actor Critic (A3C) (WIP)

Resources

Textbooks:

Classes:

Talks/Tutorials:

Other Projects:

Selected Papers:

About

Implementation of Reinforcement Learning Algorithms. Python, OpenAI Gym, Tensorflow. Exercises and Solutions to accompany Sutton's Book and David Silver's course.

http://www.wildml.com/2016/10/learning-reinforcement-learning/


Languages

Language:Jupyter Notebook 98.6%Language:Python 1.4%