This implementation example runs on Hyperspectral Data.
Please cite:
@article{tfST,
title={Three-Dimensional Fourier Scattering Transform and Classification of Hyperspectral Images},
author={Ilya Kavalerov and Weilin Li and Wojciech Czaja and Rama Chellappa},
journal={arXiv preprint arXiv:TBA},
year={2019}
}
See the GIC website and download for example the "corrected Indian Pines" and "Indian Pines groundtruth" datasets.
CUDA_VISIBLE_DEVICES=0 python main.py --dataset=IP --data_root=/scratch0/ilya/locDoc/data/hyperspec/datasets/ --train_test_splits=Indian_pines_gt_traintest.mat
Will run classification on a training set size of 10% with OA 98.30%.
One training/testing split is included. Create more by editing the variables OUT_PATH
, DATASET_PATH
, ntrials
, and datasetsamples
in create_training_splits.m
, and running:
matlab -nodesktop -nosplash -r "create_training_splits"
Tested on Python 2.7.14 (Anaconda), tensorflow 1.10.1, cuda 9.0.176, cudnn-8.0. Red Hat Enterprise Linux Workstation release 7.6 (Maipo). GeForce GTX TITAN X.
MIT