Bottlenecked Pretraining for Dense Retrieval
git clone
cd boder
pip install -r requirements.txt
export WANDB_PROJECT=BODER
RUN_NAME=msmarco_boder
python -m torch.distributed.launch --nproc_per_node 8 run.py \
--output_dir models_pretrain_reproduce/${RUN_NAME} \
--model_name_or_path bert-base-uncased \
--tokenizer_name bert-base-uncased \
--model_type boder \
--do_train \
--encoder_mlm_probability 0.3 \
--decoder_mlm_probability 0.5 \
--save_steps 20000 \
--per_device_train_batch_size 256 \
--max_seq_length 128 \
--warmup_ratio 0.05 \
--learning_rate 3e-4 \
--max_steps 80000 \
--overwrite_output_dir \
--dataloader_num_workers 0 \
--n_head_layers 2 \
--dataset_name Tevatron/msmarco-passage-corpus \
--report_to wandb \
--logging_steps 100 \
--run_name ${RUN_NAME} \
--do_augmentation False \
--random_mask False \
--bottlenecked_pretrain True \
--cache_dir cache
For reproduce the typos robust pretraining model ToRoDer introduced in our paper Typos-aware Bottlenecked Pre-Training for Robust Dense Retrieval, Shengyao Zhuang, Linjun Shou, Jian Pei, Ming Gong, Houxing Ren, Guido Zuccon and Daxin Jiang, SIGIR-AP2023.
Simply set --do_augmentation True
and add --augment_probability 0.3
to the above command:
export WANDB_PROJECT=BODER
RUN_NAME=msmarco_ToRoDer
python -m torch.distributed.launch --nproc_per_node 8 run.py \
--output_dir models_pretrain_reproduce/${RUN_NAME} \
--model_name_or_path bert-base-uncased \
--tokenizer_name bert-base-uncased \
--model_type boder \
--do_train \
--encoder_mlm_probability 0.3 \
--decoder_mlm_probability 0.5 \
--save_steps 20000 \
--per_device_train_batch_size 256 \
--max_seq_length 128 \
--warmup_ratio 0.05 \
--learning_rate 3e-4 \
--max_steps 80000 \
--overwrite_output_dir \
--dataloader_num_workers 0 \
--n_head_layers 2 \
--dataset_name Tevatron/msmarco-passage-corpus \
--report_to wandb \
--logging_steps 100 \
--run_name ${RUN_NAME} \
--do_augmentation True \
--augment_probability 0.3 \
--random_mask False \
--bottlenecked_pretrain True \
--cache_dir cache
For fine-tuning on MS MARCO passage ranking task with self-teaching method, please refer to our CharacterBERT-DR repo.
ielabgroup/ToRoDer: Pre-trained only backbone model (Typos-aware Bottlenecked Pretrained on MS MARCO).
ielabgroup/ToRoDer-msmarco: Per-trained and fine-tuned (full multi-stage fine-tuning with self-teaching) on MS MARCO