- Document here the project: mlproject
- Description: Project Description
- Data Source:
- Type of analysis:
Please document the project the better you can.
The initial setup.
Create virtualenv and install the project:
$ sudo apt-get install virtualenv python-pip python-dev
$ deactivate; virtualenv ~/venv ; source ~/venv/bin/activate ;\
pip install pip -U; pip install -r requirements.txt
Unittest test:
$ make clean install test
Check for mlproject in gitlab.com/{group}. If your project is not set please add it:
- Create a new project on
gitlab.com/{group}/mlproject
- Then populate it:
$ ## e.g. if group is "{group}" and project_name is "mlproject"
$ git remote add origin git@gitlab.com:{group}/mlproject.git
$ git push -u origin master
$ git push -u origin --tags
Functionnal test with a script:
$ cd /tmp
$ mlproject-run
Go to gitlab.com/{group}/mlproject
to see the project, manage issues,
setup you ssh public key, ...
Create a python3 virtualenv and activate it:
$ sudo apt-get install virtualenv python-pip python-dev
$ deactivate; virtualenv -ppython3 ~/venv ; source ~/venv/bin/activate
Clone the project and install it:
$ git clone gitlab.com/{group}/mlproject
$ cd mlproject
$ pip install -r requirements.txt
$ make clean install test # install and test
Functionnal test with a script:
$ cd /tmp
$ mlproject-run
Every push of master
branch will execute .github/workflows/pythonpackages.yml
docker jobs.
Every push of master
branch will execute .gitlab-ci.yml
docker jobs.