This application was generated using JHipster 8.0.0, you can find documentation and help at https://www.jhipster.tech/documentation-archive/v8.0.0.
Node is required for generation and recommended for development. package.json
is always generated for a better development experience with prettier, commit hooks, scripts and so on.
In the project root, JHipster generates configuration files for tools like git, prettier, eslint, husky, and others that are well known and you can find references in the web.
/src/*
structure follows default Java structure.
-
.yo-rc.json
- Yeoman configuration file JHipster configuration is stored in this file atgenerator-jhipster
key. You may findgenerator-jhipster-*
for specific blueprints configuration. -
.yo-resolve
(optional) - Yeoman conflict resolver Allows to use a specific action when conflicts are found skipping prompts for files that matches a pattern. Each line should match[pattern] [action]
with pattern been a Minimatch pattern and action been one of skip (default if ommited) or force. Lines starting with#
are considered comments and are ignored. -
.jhipster/*.json
- JHipster entity configuration files -
npmw
- wrapper to use locally installed npm. JHipster installs Node and npm locally using the build tool by default. This wrapper makes sure npm is installed locally and uses it avoiding some differences different versions can cause. By using./npmw
instead of the traditionalnpm
you can configure a Node-less environment to develop or test your application. -
/src/main/docker
- Docker configurations for the application and services that the application depends on
Congratulations! You've selected an excellent way to secure your JHipster application. If you're not sure what OAuth and OpenID Connect (OIDC) are, please see What the Heck is OAuth?
To log in to your app, you'll need to have Keycloak up and running. The JHipster Team has created a Docker container for you that has the default users and roles. Start Keycloak using the following command.
docker compose -f src/main/docker/keycloak.yml up
The security settings in src/main/resources/config/application.yml
are configured for this image.
spring:
...
security:
oauth2:
client:
provider:
oidc:
issuer-uri: http://localhost:9080/realms/jhipster
registration:
oidc:
client-id: web_app
client-secret: web_app
scope: openid,profile,email
Some of Keycloak configuration is now done in build time and the other part before running the app, here is the list of all build and configuration options.
Before moving to production, please make sure to follow this guide for better security and performance.
Also, you should never use start-dev
nor KC_DB=dev-file
in production.
When using Kubernetes, importing should be done using init-containers (with a volume when using db=dev-file
).
If you'd like to use Okta instead of Keycloak, it's pretty quick using the Okta CLI. After you've installed it, run:
okta register
Then, in your JHipster app's directory, run okta apps create
and select JHipster. This will set up an Okta app for you, create ROLE_ADMIN
and ROLE_USER
groups, create a .okta.env
file with your Okta settings, and configure a groups
claim in your ID token.
Run source .okta.env
and start your app with Maven or Gradle. You should be able to sign in with the credentials you registered with.
If you're on Windows, you should install WSL so the source
command will work.
If you'd like to configure things manually through the Okta developer console, see the instructions below.
First, you'll need to create a free developer account at https://developer.okta.com/signup/. After doing so, you'll get your own Okta domain, that has a name like https://dev-123456.okta.com
.
Modify src/main/resources/config/application.yml
to use your Okta settings.
spring:
...
security:
oauth2:
client:
provider:
oidc:
issuer-uri: https://{yourOktaDomain}/oauth2/default
registration:
oidc:
client-id: {clientId}
client-secret: {clientSecret}
security:
Create an OIDC App in Okta to get a {clientId}
and {clientSecret}
. To do this, log in to your Okta Developer account and navigate to Applications > Add Application. Click Web and click the Next button. Give the app a name you’ll remember, specify http://localhost:8080
as a Base URI, and http://localhost:8080/login/oauth2/code/oidc
as a Login Redirect URI. Click Done, then Edit and add http://localhost:8080
as a Logout redirect URI. Copy and paste the client ID and secret into your application.yml
file.
Create a ROLE_ADMIN
and ROLE_USER
group and add users into them. Modify e2e tests to use this account when running integration tests. You'll need to change credentials in src/test/javascript/e2e/account/account.spec.ts
and src/test/javascript/e2e/admin/administration.spec.ts
.
Navigate to API > Authorization Servers, click the Authorization Servers tab and edit the default one. Click the Claims tab and Add Claim. Name it "groups", and include it in the ID Token. Set the value type to "Groups" and set the filter to be a Regex of .*
.
After making these changes, you should be good to go! If you have any issues, please post them to Stack Overflow. Make sure to tag your question with "jhipster" and "okta".
If you'd like to use Auth0 instead of Keycloak, follow the configuration steps below:
- Create a free developer account at https://auth0.com/signup. After successful sign-up, your account will be associated with a unique domain like
dev-xxx.us.auth0.com
- Create a new application of type
Regular Web Applications
. Switch to theSettings
tab, and configure your application settings like:- Allowed Callback URLs:
http://localhost:8080/login/oauth2/code/oidc
- Allowed Logout URLs:
http://localhost:8080/
- Allowed Callback URLs:
- Navigate to User Management > Roles and create new roles named
ROLE_ADMIN
, andROLE_USER
. - Navigate to User Management > Users and create a new user account. Click on the Role tab to assign roles to the newly created user account.
- Navigate to Auth Pipeline > Rules and create a new Rule. Choose
Empty rule
template. Provide a meaningful name likeJHipster claims
and replaceScript
content with the following and Save.
function (user, context, callback) {
user.preferred_username = user.email;
const roles = (context.authorization || {}).roles;
function prepareCustomClaimKey(claim) {
return `https://www.jhipster.tech/${claim}`;
}
const rolesClaim = prepareCustomClaimKey('roles');
if (context.idToken) {
context.idToken[rolesClaim] = roles;
}
if (context.accessToken) {
context.accessToken[rolesClaim] = roles;
}
callback(null, user, context);
}
- In your
JHipster
application, modifysrc/main/resources/config/application.yml
to use your Auth0 application settings:
spring:
...
security:
oauth2:
client:
provider:
oidc:
# make sure to include the ending slash!
issuer-uri: https://{your-auth0-domain}/
registration:
oidc:
client-id: {clientId}
client-secret: {clientSecret}
scope: openid,profile,email
jhipster:
...
security:
oauth2:
audience:
- https://{your-auth0-domain}/api/v2/
Before running Cypress tests, specify Auth0 user credentials by overriding the CYPRESS_E2E_USERNAME
and CYPRESS_E2E_PASSWORD
environment variables.
export CYPRESS_E2E_USERNAME="<your-username>"
export CYPRESS_E2E_PASSWORD="<your-password>"
See Cypress' documentation for setting OS environment variables to learn more.
Auth0 requires a user to provide authorization consent on the first login. Consent flow is currently not handled in the Cypress test suite. To mitigate the issue, you can use a user account that has already granted consent to authorize application access via interactive login. Before you can build this project, you must install and configure the following dependencies on your machine:
- Node.js: We use Node to run a development web server and build the project. Depending on your system, you can install Node either from source or as a pre-packaged bundle.
After installing Node, you should be able to run the following command to install development tools. You will only need to run this command when dependencies change in package.json.
npm install
We use npm scripts and Angular CLI with Webpack as our build system.
If you are using hazelcast as a cache, you will have to launch a cache server. To start your cache server, run:
docker compose -f src/main/docker/hazelcast-management-center.yml up -d
Run the following commands in two separate terminals to create a blissful development experience where your browser auto-refreshes when files change on your hard drive.
./mvnw
npm start
Npm is also used to manage CSS and JavaScript dependencies used in this application. You can upgrade dependencies by
specifying a newer version in package.json. You can also run npm update
and npm install
to manage dependencies.
Add the help
flag on any command to see how you can use it. For example, npm help update
.
The npm run
command will list all of the scripts available to run for this project.
JHipster ships with PWA (Progressive Web App) support, and it's turned off by default. One of the main components of a PWA is a service worker.
The service worker initialization code is disabled by default. To enable it, uncomment the following code in src/main/webapp/app/app.module.ts
:
ServiceWorkerModule.register('ngsw-worker.js', { enabled: false }),
For example, to add Leaflet library as a runtime dependency of your application, you would run following command:
npm install --save --save-exact leaflet
To benefit from TypeScript type definitions from DefinitelyTyped repository in development, you would run following command:
npm install --save-dev --save-exact @types/leaflet
Then you would import the JS and CSS files specified in library's installation instructions so that Webpack knows about them: Edit src/main/webapp/app/app.module.ts file:
import 'leaflet/dist/leaflet.js';
Edit src/main/webapp/content/scss/vendor.scss file:
@import 'leaflet/dist/leaflet.css';
Note: There are still a few other things remaining to do for Leaflet that we won't detail here.
For further instructions on how to develop with JHipster, have a look at Using JHipster in development.
You can also use Angular CLI to generate some custom client code.
For example, the following command:
ng generate component my-component
will generate few files:
create src/main/webapp/app/my-component/my-component.component.html
create src/main/webapp/app/my-component/my-component.component.ts
update src/main/webapp/app/app.module.ts
To build the final jar and optimize the jhipstermono application for production, run:
./mvnw -Pprod clean verify
This will concatenate and minify the client CSS and JavaScript files. It will also modify index.html
so it references these new files.
To ensure everything worked, run:
java -jar target/*.jar
Then navigate to http://localhost:8080 in your browser.
Refer to Using JHipster in production for more details.
To package your application as a war in order to deploy it to an application server, run:
./mvnw -Pprod,war clean verify
JHipster Control Center can help you manage and control your application(s). You can start a local control center server (accessible on http://localhost:7419) with:
docker compose -f src/main/docker/jhipster-control-center.yml up
To launch your application's tests, run:
./mvnw verify
Unit tests are run by Jest. They're located in src/test/javascript/ and can be run with:
npm test
UI end-to-end tests are powered by Cypress. They're located in src/test/javascript/cypress
and can be run by starting Spring Boot in one terminal (./mvnw spring-boot:run
) and running the tests (npm run e2e
) in a second one.
You can execute automated [lighthouse audits][https://developers.google.com/web/tools/lighthouse/] with [cypress audits][https://github.com/mfrachet/cypress-audit] by running npm run e2e:cypress:audits
.
You should only run the audits when your application is packaged with the production profile.
The lighthouse report is created in target/cypress/lhreport.html
Performance tests are run by Gatling and written in Scala. They're located in src/test/java/gatling/simulations.
You can execute all Gatling tests with
./mvnw gatling:test
When using Cypress, you can generate code coverage report by running your dev server with instrumented code:
Build your Angular application with instrumented code:
npm run webapp:instrumenter
Start your backend without compiling frontend:
npm run backend:start
Start your Cypress end to end testing:
npm run e2e:cypress:coverage
The coverage report is generated under ./coverage/lcov-report/
Sonar is used to analyse code quality. You can start a local Sonar server (accessible on http://localhost:9001) with:
docker compose -f src/main/docker/sonar.yml up -d
Note: we have turned off forced authentication redirect for UI in src/main/docker/sonar.yml for out of the box experience while trying out SonarQube, for real use cases turn it back on.
You can run a Sonar analysis with using the sonar-scanner or by using the maven plugin.
Then, run a Sonar analysis:
./mvnw -Pprod clean verify sonar:sonar -Dsonar.login=admin -Dsonar.password=admin
If you need to re-run the Sonar phase, please be sure to specify at least the initialize
phase since Sonar properties are loaded from the sonar-project.properties file.
./mvnw initialize sonar:sonar -Dsonar.login=admin -Dsonar.password=admin
Additionally, Instead of passing sonar.password
and sonar.login
as CLI arguments, these parameters can be configured from sonar-project.properties as shown below:
sonar.login=admin
sonar.password=admin
For more information, refer to the Code quality page.
You can use Docker to improve your JHipster development experience. A number of docker-compose configuration are available in the src/main/docker folder to launch required third party services.
For example, to start a postgresql database in a docker container, run:
docker compose -f src/main/docker/postgresql.yml up -d
To stop it and remove the container, run:
docker compose -f src/main/docker/postgresql.yml down
You can also fully dockerize your application and all the services that it depends on. To achieve this, first build a docker image of your app by running:
npm run java:docker
Or build a arm64 docker image when using an arm64 processor os like MacOS with M1 processor family running:
npm run java:docker:arm64
Then run:
docker compose -f src/main/docker/app.yml up -d
When running Docker Desktop on MacOS Big Sur or later, consider enabling experimental Use the new Virtualization framework
for better processing performance (disk access performance is worse).
For more information refer to Using Docker and Docker-Compose, this page also contains information on the docker-compose sub-generator (jhipster docker-compose
), which is able to generate docker configurations for one or several JHipster applications.
To configure CI for your project, run the ci-cd sub-generator (jhipster ci-cd
), this will let you generate configuration files for a number of Continuous Integration systems. Consult the Setting up Continuous Integration page for more information.