This is the code accompanying the paper "Towards Automatic Risk Adaptation in Distributional Reinforcement Learning", presented at the Reinforcement Learning for Real Life Workshop at ICML 2021.
To install this repo's dependencies, run:
pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
git submodule update --init --recursive # to pull dependencies
pip install -e dependencies/pybullet-gym
To start training, execute train_bullet.py with a given config, robot and environment limits, e.g.:
python train_bullet.py --config configs/bullet/rnd_dsac.yml --walker_id DynamicAntBulletEnv-v0 --slippery --slippery_limits 0.8 1.2 --heavy --heavy_limits 0.8 1.2
In configs/bullet, you will find configurations for different agents and ARA mappings.