fprimeau / MARBL_mex

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

MARBL MEX Interface

This code provides an Matlab mex interface for MARBL Marine Biogeochemistry Library (https://github.com/marbl-ecosys/MARBL.git)

The main developers for this code is JJ Becker (jjbecker) and Francois Primeau (fprimeau).

Instalation Instructions

Comming soon…

MARBL MEX Variables

Notes on Marble MEX Variables

MARBL has >20,000 lines of F90 source code and many of them are addressing somewhat complex and general purpose variable definition, initialization, run time storage and result/restart files. The variables of interest to the biogeochemistry community are typically stored in straightforward 2 or 3 dimensional arrays of floating point variables. In some cases the data is in a F90 structure, which probably can be sent through the MEX interface, but because of the added complexity this is presently not implemented.

The present implementation of the interface that simply repeats scalar fields in the structs so that the struct can be transferred as a much simpler 2D array. In the long term, an improved solution might be necessary because it hard-codes the interface to the existing version of MARBL, and one of the goals is to add new tracers and diagnostics. Eventually the MEX interface probably needs to reflect the actual F90 variable structures on the Matlab side. This is possible, but the debugging of the MEX F90 code is extremely tricky, tedious and time consuming.

There are two broad classes of variables in MARBL:

(a) 3-d interior fields

(b) 2-d surface fields

Conceptually this is best though of as adding a function that references the properties of the top of the water column and returns the air-sea flux. In MARBL it appears the interior water was coded first, and without atmospheric interaction, and the atmospheric interactions where added later <maybe?> as second update step. That implementation in F90 is perhaps efficient because FORTRAN is generally a “pass by reference” language, so large amounts of data are not copied, just the addresses. Matlab uses both pass by reference, and pass by value, which requires further study and coding to make this separate “surface flux” and “interior” implementation computationally efficient. Because the MEX interface almost certainly requires a pass by value interface, there are potential substantial code speed up opportunities at the cost of much code complexity to modify the F90 MEX code to replace data copying with <possibly tricky> pointer operations that share memory between Matlab and F90. The overall cost of the “surface flux” fiction might turn out to be negligible.

The MARBL “update” subroutines generally do not update tracers, they just return a tendency to the circulation model, which is then responsible for combining the MARBL biogeochemical tendencies with the advective-diffusive tendencies to update the biogeochemical state of the ocean. MARBL diagnostics are <always?> calculated every time step for every layer but they do not need to be to transferred across the MEX to Matlab, or stored if transferred, but experience indicates they are invaluable debugging tools.

The list of arrays that are transferred from the Matlab workspace to MALL via the MEX interface is listed in Table 1.

Table 1() indicate 13C and 14C isotopes
grid definition (zw,zt,dzt)3 x nlevin
maximum number of layers in each water column1 x ncolsin
interior “forcings” (environmental parameters)6 x ncolsin
surface “forcings” (environmental parameters)11 (13) x ncolsin
interior biogeochemical state (tracers)32 (46) x nlayers x ncolsin
surface biogeochemical state (tracers)32 (46) x ncolsin
surface functions of the biogeochemical state e.g. pH1 or 2 x ncolsin/out
interior functions of the biogeochemical state e.g. pH1 or 2 x nlayers x ncolsin/out
time tendency for the biogeochemical state32 (46) x nlayers x ncolsout
surface fluxes9 x ncolsout
diagnostics associated with the air sea interface27 (43) x ncolsout
diagnostics associated with the tracer tendencies in the interior308 (386) x nlayers x ncolsout
  • The grid definition needs to be transferred to MARBL only once because it does not change.
  • The pH variables are passed in and out of MARBL. The value passed in is used as an intial iterate for the nonlinear seawater CO2 system equations.
  • The time tendencies and the surface fluxes are used to update the biogeochemical state of the ocean as well as the chemical state of the overlying atmosphere
  • The diagnostics are not used to update the biogeochemical state of the model and therefor do not need to be passed back to Matlab’s memory space if they will not be used.q

State variables nlev x ncols

only the
numberedx indicates that we have a
variables aregridded OCIM field available
essentialstate variablesunitsnotesfor initialization
1O2mmol/m^3x
2ALKmmol/m^3x
3Lig?
4DICmmol/m^3inorganic carbonx
( DI13C )mmol/m^3?
( DI14C )mmol/m^3?
5DOCmmol/m^3organic carbonx see Letscher et al. (2014)
( DO13Ctot )mmol/m^3?
( DO14Ctot )mmol/m^3?
6DOCrmmol/m^3recalcitrant DOMx see Letscher et al. (2014)
7DONmmol/m^3DOMx see Letscher et al. (2014)
8DOPmmol/m^3DOMx see Letscher et al. (2014)
9DOPrmmol/m^3recalcitrant DOMx see Letscher et al. (2014)
10DONrmmol/m^3recalcitrant DOMx see Letscher et al. (2014)
11PO4mmol/m^3nutrientx
12NO3mmol/m^3nutrientx
13SiO3mmol/m^3nutrientx
14NH4mmol/m^3nutrient? (just use zero?)
15Femmol/m^3nutrient?
16zooCmmol/m^3zooplankton (Redfield C:N:P)?
( zootot13C )mmol/m^3?
( zootot14C )mmol/m^3?
17spChlmg/m^3small phyto?
18spCmmol/m^3small phyto?
( sp13C )mmol/m^3?
( sp14C )mmol/m^3?
19spPmmol/m^3small phyto?
20spFemmol/m^3small phyto?
21spCaCO3mmol/m^3small phyto?
( spCa13CO3 )mmol/m^3?
( spCaC14CO3 )mmol/m^3?
22diatChlmg/m^3diatom?
23diatCmmol/m^3diatom variable C:P fixed C:N?
24diatPmmol/m^3diatom varoable C:P?
25diatFemmol/m^3diatom?
26diatSimmol/m^3diatom?
( diat13C )mmol/m^3?
( diat14C )mmol/m^3?
27diazChlmg/m^3diazotroph?
28diazCmmol/m^3diazotroph variable C:P fixed C:N?
29diazPmmol/m^3diazotroph variable C:P?
30diazFemmol/m^3diazotroph?
( diaz13C )mmol/m^3?
( diaz14C )mmol/m^3?
DIC_ALT_CO2mmol/m^3??
ALK_ALT_CO2mmol/m^3??

Interior Forcing nlev x ncols

only the
numberedx indicates that we
variables areinteriorhave a field available
essential“forcing”unitssizeon the OCIM grid
1dust_fluxg/cm^2/s?
2swr_surfW/m^2?
3pot_tempdegCx
4salinitypsux
5pressurebarsx
6Fe_fluxnmol/cm^2/s?

Surface Forcing 1 x ncols

only the
numberedx indicates that we
variables aresurfacehave a field available
essential“forcing”on the OCIM grid
1u10_sqrx
2sssx
3sstx
4Ice Fractionx
5Dust Flux?
6Iron Flux?
7NOx Fluxx
8NHy Flux?
9Atm. pressurex
10xco2x
d13c? atmospheric delta 13C
d14cx
xco2_alt_co2?

Functions of the state variables

namesunits
ph_surf
ph_3d
ph_surf_alt_co2
ph_alt_co2
flux_o2nmol/cm^2/s
flux_co2nmol/cm^2/s
flux_nhxnmol/cm^2/s
totalChlmg/m^3

interior_tendency_diags

ModuleShort NameUnitsLong Name or descriptionRankNotes
1ecosyszsatcalccmCalcite Saturation DepthYes; cm not meters!
2ecosyszsataragcmAragonite Saturation DepthYes; cm not meters!
3ecosysO2_ZMINmmol/m^3Vertical Minimum of O2
4ecosysO2_ZMIN_DEPTHcmDepth of Vertical Minimum of O2Yes; cm not meters!
5ecosysphotoC_TOT_zintmmol/m^3 cm/sTotal C Fixation Vertical Integral
6ecosysphotoC_TOT_zint_100mmmol/m^3 cm/s“Total C Fixation Vertical Integral0-100m”
7ecosysphotoC_NO3_TOT_zintmmol/m^3 cm/sTotal C Fixation from NO3 Vertical Integral
8ecosysphotoC_NO3_TOT_zint_100mmmol/m^3 cm/s“Total C Fixation from NO3 Vertical Integral0-100m”
9ecosysDOC_prod_zintmmol/m^3 cm/sVertical Integral of DOC Production
10ecosysDOC_prod_zint_100mmmol/m^3 cm/s“Vertical Integral of DOC Production0-100m”
11ecosysDOC_remin_zintmmol/m^3 cm/sVertical Integral of DOC Remineralization
12ecosysDOC_remin_zint_100mmmol/m^3 cm/s“Vertical Integral of DOC Remineralization0-100m”
13ecosysDOCr_remin_zintmmol/m^3 cm/sVertical Integral of DOCr Remineralization
14ecosysDOCr_remin_zint_100mmmol/m^3 cm/s“Vertical Integral of DOCr Remineralization0-100m”
15ecosysJint_Ctotmmol/m^3 cm/sVertical Integral of Conservative Subterms of Source Sink Term for Ctot
16ecosysJint_Ntotmmol/m^3 cm/sVertical Integral of Conservative Subterms of Source Sink Term for Ntot
17ecosysJint_Ptotmmol/m^3 cm/sVertical Integral of Conservative Subterms of Source Sink Term for Ptot
18ecosysJint_Sitotmmol/m^3 cm/sVertical Integral of Conservative Subterms of Source Sink Term for Sitot
19ecosysJint_Fetotmmol/m^3 cm/sVertical Integral of Conservative Subterms of Source Sink Term for Fetot
20ecosyscalcToFloornmol/cm^2/sCaCO3 Flux Hitting Sea Floor
21ecosyscalcToSednmol/cm^2/sCaCO3 Flux to Sediments
22ecosyscalcToSed_ALT_CO2nmol/cm^2/s“CaCO3 Flux to SedimentsAlternative CO2”
23ecosyspocToFloornmol/cm^2/sPOC Flux Hitting Sea Floor
24ecosyspocToSednmol/cm^2/sPOC Flux to Sediments
25ecosysponToSednmol/cm^2/snitrogen burial Flux to Sediments
26ecosysSedDenitrifnmol/cm^2/snitrogen loss in Sediments
27ecosysOtherReminnmol/cm^2/s“non-oxicnon-dentr remin in Sediments”
28ecosyspopToSednmol/cm^2/sphosphorus Flux to Sediments
29ecosysbsiToSednmol/cm^2/sbiogenic Si Flux to Sediments
30ecosysdustToSedg/cm^2/sdust Flux to Sediments
31ecosyspfeToSednmol/cm^2/spFe Flux to Sediments
32ecosyssp_N_lim_surf1“Small Phyto N LimitationSurface”
33ecosyssp_N_lim_Cweight_avg_100m1“Small Phyto N Limitationcarbon biomass weighted average over 0-100m”
34ecosyssp_P_lim_surf1“Small Phyto P LimitationSurface”
35ecosyssp_P_lim_Cweight_avg_100m1“Small Phyto P Limitationcarbon biomass weighted average over 0-100m”
36ecosyssp_Fe_lim_surf1“Small Phyto Fe LimitationSurface”
37ecosyssp_Fe_lim_Cweight_avg_100m1“Small Phyto Fe Limitationcarbon biomass weighted average over 0-100m”
38ecosyssp_light_lim_surf1“Small Phyto Light LimitationSurface”
39ecosyssp_light_lim_Cweight_avg_100m1“Small Phyto Light Limitationcarbon biomass weighted average over 0-100m”
40ecosysphotoC_sp_zintmmol/m^3 cm/sSmall Phyto C Fixation Vertical Integral
41ecosysphotoC_sp_zint_100mmmol/m^3 cm/s“Small Phyto C Fixation Vertical Integral0-100m”
42ecosysphotoC_NO3_sp_zintmmol/m^3 cm/sSmall Phyto C Fixation from NO3 Vertical Integral
43ecosyssp_CaCO3_form_zintmmol/m^3 cm/sSmall Phyto CaCO3 Formation Vertical Integral
44ecosyssp_CaCO3_form_zint_100mmmol/m^3 cm/s“Small Phyto CaCO3 Formation Vertical Integral0-100m”
45ecosysgraze_sp_zintmmol/m^3 cm/sSmall Phyto Grazing Vertical Integral
46ecosysgraze_sp_zint_100mmmol/m^3 cm/s“Small Phyto Grazing Vertical Integral0-100m”
47ecosysgraze_sp_poc_zintmmol/m^3 cm/sSmall Phyto Grazing to POC Vertical Integral
48ecosysgraze_sp_poc_zint_100mmmol/m^3 cm/s“Small Phyto Grazing to POC Vertical Integral0-100m”
49ecosysgraze_sp_doc_zintmmol/m^3 cm/sSmall Phyto Grazing to DOC Vertical Integral
50ecosysgraze_sp_doc_zint_100mmmol/m^3 cm/s“Small Phyto Grazing to DOC Vertical Integral0-100m”
51ecosysgraze_sp_zoo_zintmmol/m^3 cm/sSmall Phyto Grazing to ZOO Vertical Integral
52ecosysgraze_sp_zoo_zint_100mmmol/m^3 cm/s“Small Phyto Grazing to ZOO Vertical Integral0-100m”
53ecosyssp_loss_zintmmol/m^3 cm/sSmall Phyto Loss Vertical Integral
54ecosyssp_loss_zint_100mmmol/m^3 cm/s“Small Phyto Loss Vertical Integral0-100m”
55ecosyssp_loss_poc_zintmmol/m^3 cm/sSmall Phyto Loss to POC Vertical Integral
56ecosyssp_loss_poc_zint_100mmmol/m^3 cm/s“Small Phyto Loss to POC Vertical Integral0-100m”
57ecosyssp_loss_doc_zintmmol/m^3 cm/sSmall Phyto Loss to DOC Vertical Integral
58ecosyssp_loss_doc_zint_100mmmol/m^3 cm/s“Small Phyto Loss to DOC Vertical Integral0-100m”
59ecosyssp_agg_zintmmol/m^3 cm/sSmall Phyto Aggregation Vertical Integral
60ecosyssp_agg_zint_100mmmol/m^3 cm/s“Small Phyto Aggregation Vertical Integral0-100m”
61ecosysdiat_N_lim_surf1“Diatom N LimitationSurface”
62ecosysdiat_N_lim_Cweight_avg_100m1“Diatom N Limitationcarbon biomass weighted average over 0-100m”
63ecosysdiat_P_lim_surf1“Diatom P LimitationSurface”
64ecosysdiat_P_lim_Cweight_avg_100m1“Diatom P Limitationcarbon biomass weighted average over 0-100m”
65ecosysdiat_Fe_lim_surf1“Diatom Fe LimitationSurface”
66ecosysdiat_Fe_lim_Cweight_avg_100m1“Diatom Fe Limitationcarbon biomass weighted average over 0-100m”
67ecosysdiat_SiO3_lim_surf1“Diatom SiO3 LimitationSurface”
68ecosysdiat_SiO3_lim_Cweight_avg_100m1“Diatom SiO3 Limitationcarbon biomass weighted average over 0-100m”
69ecosysdiat_light_lim_surf1“Diatom Light LimitationSurface”
70ecosysdiat_light_lim_Cweight_avg_100m1“Diatom Light Limitationcarbon biomass weighted average over 0-100m”
71ecosysphotoC_diat_zintmmol/m^3 cm/sDiatom C Fixation Vertical Integral
72ecosysphotoC_diat_zint_100mmmol/m^3 cm/s“Diatom C Fixation Vertical Integral0-100m”
73ecosysphotoC_NO3_diat_zintmmol/m^3 cm/sDiatom C Fixation from NO3 Vertical Integral
74ecosysgraze_diat_zintmmol/m^3 cm/sDiatom Grazing Vertical Integral
75ecosysgraze_diat_zint_100mmmol/m^3 cm/s“Diatom Grazing Vertical Integral0-100m”
76ecosysgraze_diat_poc_zintmmol/m^3 cm/sDiatom Grazing to POC Vertical Integral
77ecosysgraze_diat_poc_zint_100mmmol/m^3 cm/s“Diatom Grazing to POC Vertical Integral0-100m”
78ecosysgraze_diat_doc_zintmmol/m^3 cm/sDiatom Grazing to DOC Vertical Integral
79ecosysgraze_diat_doc_zint_100mmmol/m^3 cm/s“Diatom Grazing to DOC Vertical Integral0-100m”
80ecosysgraze_diat_zoo_zintmmol/m^3 cm/sDiatom Grazing to ZOO Vertical Integral
81ecosysgraze_diat_zoo_zint_100mmmol/m^3 cm/s“Diatom Grazing to ZOO Vertical Integral0-100m”
82ecosysdiat_loss_zintmmol/m^3 cm/sDiatom Loss Vertical Integral
83ecosysdiat_loss_zint_100mmmol/m^3 cm/s“Diatom Loss Vertical Integral0-100m”
84ecosysdiat_loss_poc_zintmmol/m^3 cm/sDiatom Loss to POC Vertical Integral
85ecosysdiat_loss_poc_zint_100mmmol/m^3 cm/s“Diatom Loss to POC Vertical Integral0-100m”
86ecosysdiat_loss_doc_zintmmol/m^3 cm/sDiatom Loss to DOC Vertical Integral
87ecosysdiat_loss_doc_zint_100mmmol/m^3 cm/s“Diatom Loss to DOC Vertical Integral0-100m”
88ecosysdiat_agg_zintmmol/m^3 cm/sDiatom Aggregation Vertical Integral
89ecosysdiat_agg_zint_100mmmol/m^3 cm/s“Diatom Aggregation Vertical Integral0-100m”
90ecosysdiaz_N_lim_surf1“Diazotroph N LimitationSurface”
91ecosysdiaz_N_lim_Cweight_avg_100m1“Diazotroph N Limitationcarbon biomass weighted average over 0-100m”
92ecosysdiaz_P_lim_surf1“Diazotroph P LimitationSurface”
93ecosysdiaz_P_lim_Cweight_avg_100m1“Diazotroph P Limitationcarbon biomass weighted average over 0-100m”
94ecosysdiaz_Fe_lim_surf1“Diazotroph Fe LimitationSurface”
95ecosysdiaz_Fe_lim_Cweight_avg_100m1“Diazotroph Fe Limitationcarbon biomass weighted average over 0-100m”
96ecosysdiaz_light_lim_surf1“Diazotroph Light LimitationSurface”
97ecosysdiaz_light_lim_Cweight_avg_100m1“Diazotroph Light Limitationcarbon biomass weighted average over 0-100m”
98ecosysphotoC_diaz_zintmmol/m^3 cm/sDiazotroph C Fixation Vertical Integral
99ecosysphotoC_diaz_zint_100mmmol/m^3 cm/s“Diazotroph C Fixation Vertical Integral0-100m”
100ecosysphotoC_NO3_diaz_zintmmol/m^3 cm/sDiazotroph C Fixation from NO3 Vertical Integral
101ecosysgraze_diaz_zintmmol/m^3 cm/sDiazotroph Grazing Vertical Integral
102ecosysgraze_diaz_zint_100mmmol/m^3 cm/s“Diazotroph Grazing Vertical Integral0-100m”
103ecosysgraze_diaz_poc_zintmmol/m^3 cm/sDiazotroph Grazing to POC Vertical Integral
104ecosysgraze_diaz_poc_zint_100mmmol/m^3 cm/s“Diazotroph Grazing to POC Vertical Integral0-100m”
105ecosysgraze_diaz_doc_zintmmol/m^3 cm/sDiazotroph Grazing to DOC Vertical Integral
106ecosysgraze_diaz_doc_zint_100mmmol/m^3 cm/s“Diazotroph Grazing to DOC Vertical Integral0-100m”
107ecosysgraze_diaz_zoo_zintmmol/m^3 cm/sDiazotroph Grazing to ZOO Vertical Integral
108ecosysgraze_diaz_zoo_zint_100mmmol/m^3 cm/s“Diazotroph Grazing to ZOO Vertical Integral0-100m”
109ecosysdiaz_loss_zintmmol/m^3 cm/sDiazotroph Loss Vertical Integral
110ecosysdiaz_loss_zint_100mmmol/m^3 cm/s“Diazotroph Loss Vertical Integral0-100m”
111ecosysdiaz_loss_poc_zintmmol/m^3 cm/sDiazotroph Loss to POC Vertical Integral
112ecosysdiaz_loss_poc_zint_100mmmol/m^3 cm/s“Diazotroph Loss to POC Vertical Integral0-100m”
113ecosysdiaz_loss_doc_zintmmol/m^3 cm/sDiazotroph Loss to DOC Vertical Integral
114ecosysdiaz_loss_doc_zint_100mmmol/m^3 cm/s“Diazotroph Loss to DOC Vertical Integral0-100m”
115ecosysdiaz_agg_zintmmol/m^3 cm/sDiazotroph Aggregation Vertical Integral
116ecosysdiaz_agg_zint_100mmmol/m^3 cm/s“Diazotroph Aggregation Vertical Integral0-100m”
117ecosysCaCO3_form_zintmmol/m^3 cm/sTotal CaCO3 Formation Vertical Integral
118ecosysCaCO3_form_zint_100mmmol/m^3 cm/s“Total CaCO3 Formation Vertical Integral0-100m”
119ecosyszoo_loss_zintmmol/m^3 cm/sZooplankton Loss Vertical Integral
120ecosyszoo_loss_zint_100mmmol/m^3 cm/s“Zooplankton Loss Vertical Integral0-100m”
121ecosyszoo_loss_poc_zintmmol/m^3 cm/sZooplankton Loss to POC Vertical Integral
122ecosyszoo_loss_poc_zint_100mmmol/m^3 cm/s“Zooplankton Loss to POC Vertical Integral0-100m”
123ecosyszoo_loss_doc_zintmmol/m^3 cm/sZooplankton Loss to DOC Vertical Integral
124ecosyszoo_loss_doc_zint_100mmmol/m^3 cm/s“Zooplankton Loss to DOC Vertical Integral0-100m”
125ecosysgraze_zoo_zintmmol/m^3 cm/sZooplankton Grazing Vertical Integral
126ecosysgraze_zoo_zint_100mmmol/m^3 cm/s“Zooplankton Grazing Vertical Integral0-100m”
127ecosysgraze_zoo_poc_zintmmol/m^3 cm/sZooplankton Grazing to POC Vertical Integral
128ecosysgraze_zoo_poc_zint_100mmmol/m^3 cm/s“Zooplankton Grazing to POC Vertical Integral0-100m”
129ecosysgraze_zoo_doc_zintmmol/m^3 cm/sZooplankton Grazing to DOC Vertical Integral
130ecosysgraze_zoo_doc_zint_100mmmol/m^3 cm/s“Zooplankton Grazing to DOC Vertical Integral0-100m”
131ecosysgraze_zoo_zoo_zintmmol/m^3 cm/sZooplankton Grazing to ZOO Vertical Integral
132ecosysgraze_zoo_zoo_zint_100mmmol/m^3 cm/s“Zooplankton Grazing to ZOO Vertical Integral0-100m”
133ecosysx_graze_zoo_zintmmol/m^3 cm/sZooplankton Grazing Gain Vertical Integral
134ecosysx_graze_zoo_zint_100mmmol/m^3 cm/s“Zooplankton Grazing Gain Vertical Integral0-100m”
135ecosysinsitu_tempdegCin situ temperature
136ecosysCO3mmol/m^3Carbonate Ion Concentration
137ecosysHCO3mmol/m^3Bicarbonate Ion Concentration
138ecosysH2CO3mmol/m^3Carbonic Acid Concentration
139ecosyspH_3D1pH
140ecosysCO3_ALT_CO2mmol/m^3“Carbonate Ion ConcentrationAlternative CO2”
141ecosysHCO3_ALT_CO2mmol/m^3“Bicarbonate Ion ConcentrationAlternative CO2”
142ecosysH2CO3_ALT_CO2mmol/m^3“Carbonic Acid ConcentrationAlternative CO2”
143ecosyspH_3D_ALT_CO21“pHAlternative CO2”
144ecosysco3_sat_calcmmol/m^3CO3 concentration at calcite saturation
145ecosysco3_sat_aragmmol/m^3CO3 concentration at aragonite saturation
146ecosysNITRIFmmol/m^3/sNitrification
147ecosysDENITRIFmmol/m^3/sDenitrification
148ecosysO2_PRODUCTIONmmol/m^3/sO2 Production
149ecosysO2_CONSUMPTIONmmol/m^3/sO2 Consumption
150ecosysAOUmmol/m^3Apparent O2 Utilization
151ecosysPAR_avgW/m^2PAR Average over Model Cell
152ecosysgraze_auto_TOTmmol/m^3/sTotal Autotroph Grazing
153ecosysphotoC_TOTmmol/m^3/sTotal C Fixation
154ecosysphotoC_NO3_TOTmmol/m^3/sTotal C Fixation from NO3
155ecosysDOC_prodmmol/m^3/sDOC Production
156ecosysDOC_reminmmol/m^3/sDOC Remineralization
157ecosysDOCr_reminmmol/m^3/sDOCr Remineralization
158ecosysDON_prodmmol/m^3/sDON Production
159ecosysDON_reminmmol/m^3/sDON Remineralization
160ecosysDONr_reminmmol/m^3/sDONr Remineralization
161ecosysDOP_prodmmol/m^3/sDOP Production
162ecosysDOP_reminmmol/m^3/sDOP Remineralization
163ecosysDOPr_reminmmol/m^3/sDOPr Remineralization
164ecosysDOP_loss_P_balmmol/m^3/s“DOP lossdue to P budget balancing”
165ecosysFe_scavengemmol/m^3/sIron Scavenging
166ecosysFe_scavenge_rate1/yIron Scavenging Rate
167ecosysLig_prodmmol/m^3/sProduction of Fe-binding Ligand
168ecosysLig_lossmmol/m^3/sLoss of Fe-binding Ligand
169ecosysLig_scavengemmol/m^3/sLoss of Fe-binding Ligand from Scavenging
170ecosysFefreemmol/m^3Fe not bound to Ligand
171ecosysLig_photochemmmol/m^3/sLoss of Fe-binding Ligand from UV radiation
172ecosysLig_degmmol/m^3/sLoss of Fe-binding Ligand from Bacterial Degradation
173ecosysFESEDFLUXnmol/cm^2/sIron Sediment Flux
174ecosysPOC_FLUX_100mmmol/m^3 cm/sPOC Flux at 100m
175ecosysPOP_FLUX_100mmmol/m^3 cm/sPOP Flux at 100m
176ecosysCaCO3_FLUX_100mmmol/m^3 cm/sCaCO3 Flux at 100m
177ecosysSiO2_FLUX_100mmmol/m^3 cm/sSiO2 Flux at 100m
178ecosysP_iron_FLUX_100mmmol/m^3 cm/sP_iron Flux at 100m
179ecosysPOC_PROD_zintmmol/m^3 cm/sVertical Integral of POC Production
180ecosysPOC_PROD_zint_100mmmol/m^3 cm/s“Vertical Integral of POC Production0-100m”
181ecosysPOC_REMIN_DOCr_zintmmol/m^3 cm/sVertical Integral of POC Remineralization routed to DOCr
182ecosysPOC_REMIN_DOCr_zint_100mmmol/m^3 cm/s“Vertical Integral of POC Remineralization routed to DOCr0-100m”
183ecosysPOC_REMIN_DIC_zintmmol/m^3 cm/sVertical Integral of POC Remineralization routed to DIC
184ecosysPOC_REMIN_DIC_zint_100mmmol/m^3 cm/s“Vertical Integral of POC Remineralization routed to DIC0-100m”
185ecosysCaCO3_PROD_zintmmol/m^3 cm/sVertical Integral of CaCO3 Production
186ecosysCaCO3_PROD_zint_100mmmol/m^3 cm/s“Vertical Integral of CaCO3 Production0-100m”
187ecosysCaCO3_REMIN_zintmmol/m^3 cm/sVertical Integral of CaCO3 Remineralization
188ecosysCaCO3_REMIN_zint_100mmmol/m^3 cm/s“Vertical Integral of CaCO3 Remineralization0-100m”
189ecosysPOC_FLUX_INmmol/m^3 cm/sPOC Flux into Cell
190ecosysPOC_sFLUX_INmmol/m^3 cm/sPOC sFlux into Cell
191ecosysPOC_hFLUX_INmmol/m^3 cm/sPOC hFlux into Cell
192ecosysPOC_PRODmmol/m^3/sPOC Production
193ecosysPOC_REMIN_DOCrmmol/m^3/sPOC Remineralization routed to DOCr
194ecosysPOC_REMIN_DICmmol/m^3/sPOC Remineralization routed to DIC
195ecosysPOP_FLUX_INmmol/m^3 cm/sPOP Flux into Cell
196ecosysPOP_PRODmmol/m^3/sPOP Production
197ecosysPOP_REMIN_DOPrmmol/m^3/sPOP Remineralization routed to DOPr
198ecosysPOP_REMIN_PO4mmol/m^3/sPOP Remineralization routed to PO4
199ecosysPON_REMIN_DONrmmol/m^3/sPON Remineralization routed to DONr
200ecosysPON_REMIN_NH4mmol/m^3/sPON Remineralization routed to NH4
201ecosysCaCO3_FLUX_INmmol/m^3 cm/sCaCO3 Flux into Cell
202ecosysCaCO3_PRODmmol/m^3/sCaCO3 Production
203ecosysCaCO3_REMINmmol/m^3/sCaCO3 Remineralization
204ecosysCaCO3_ALT_CO2_FLUX_INmmol/m^3 cm/s“CaCO3 Flux into CellAlternative CO2”
205ecosysCaCO3_ALT_CO2_PRODmmol/m^3/s“CaCO3 ProductionAlternative CO2”
206ecosysCaCO3_ALT_CO2_REMINmmol/m^3/s“CaCO3 RemineralizationAlternative CO2”
207ecosysSiO2_FLUX_INmmol/m^3 cm/sSiO2 Flux into Cell
208ecosysSiO2_PRODmmol/m^3/sSiO2 Production
209ecosysSiO2_REMINmmol/m^3/sSiO2 Remineralization
210ecosysdust_FLUX_INg/cm^2/sDust Flux into Cell
211ecosysdust_REMINg/cm^3/sDust Remineralization
212ecosysP_iron_FLUX_INmmol/m^3 cm/sP_iron Flux into Cell
213ecosysP_iron_PRODmmol/m^3/sP_iron Production
214ecosysP_iron_REMINmmol/m^3/sP_iron Remineralization
215ecosyssp_Qp1Small Phyto P:C ratio
216ecosysphotoC_spmmol/m^3/sSmall Phyto C Fixation
217ecosysphotoC_NO3_spmmol/m^3/sSmall Phyto C Fixation from NO3
218ecosysphotoFe_spmmol/m^3/sSmall Phyto Fe Uptake
219ecosysphotoNO3_spmmol/m^3/sSmall Phyto NO3 Uptake
220ecosysphotoNH4_spmmol/m^3/sSmall Phyto NH4 Uptake
221ecosysDOP_sp_uptakemmol/m^3/sSmall Phyto DOP Uptake
222ecosysPO4_sp_uptakemmol/m^3/sSmall Phyto PO4 Uptake
223ecosysgraze_spmmol/m^3/sSmall Phyto Grazing
224ecosysgraze_sp_pocmmol/m^3/sSmall Phyto Grazing to POC
225ecosysgraze_sp_docmmol/m^3/sSmall Phyto Grazing to DOC
226ecosysgraze_sp_zoommol/m^3/sSmall Phyto Grazing to ZOO
227ecosyssp_lossmmol/m^3/sSmall Phyto Loss
228ecosyssp_loss_pocmmol/m^3/sSmall Phyto Loss to POC
229ecosyssp_loss_docmmol/m^3/sSmall Phyto Loss to DOC
230ecosyssp_aggmmol/m^3/sSmall Phyto Aggregation
231ecosyssp_CaCO3_formmmol/m^3/sSmall Phyto CaCO3 Formation
232ecosysdiat_Qp1Diatom P:C ratio
233ecosysphotoC_diatmmol/m^3/sDiatom C Fixation
234ecosysphotoC_NO3_diatmmol/m^3/sDiatom C Fixation from NO3
235ecosysphotoFe_diatmmol/m^3/sDiatom Fe Uptake
236ecosysphotoNO3_diatmmol/m^3/sDiatom NO3 Uptake
237ecosysphotoNH4_diatmmol/m^3/sDiatom NH4 Uptake
238ecosysDOP_diat_uptakemmol/m^3/sDiatom DOP Uptake
239ecosysPO4_diat_uptakemmol/m^3/sDiatom PO4 Uptake
240ecosysgraze_diatmmol/m^3/sDiatom Grazing
241ecosysgraze_diat_pocmmol/m^3/sDiatom Grazing to POC
242ecosysgraze_diat_docmmol/m^3/sDiatom Grazing to DOC
243ecosysgraze_diat_zoommol/m^3/sDiatom Grazing to ZOO
244ecosysdiat_lossmmol/m^3/sDiatom Loss
245ecosysdiat_loss_pocmmol/m^3/sDiatom Loss to POC
246ecosysdiat_loss_docmmol/m^3/sDiatom Loss to DOC
247ecosysdiat_aggmmol/m^3/sDiatom Aggregation
248ecosysdiat_bSi_formmmol/m^3/sDiatom Si Uptake
249ecosysdiaz_Qp1Diazotroph P:C ratio
250ecosysphotoC_diazmmol/m^3/sDiazotroph C Fixation
251ecosysphotoC_NO3_diazmmol/m^3/sDiazotroph C Fixation from NO3
252ecosysphotoFe_diazmmol/m^3/sDiazotroph Fe Uptake
253ecosysphotoNO3_diazmmol/m^3/sDiazotroph NO3 Uptake
254ecosysphotoNH4_diazmmol/m^3/sDiazotroph NH4 Uptake
255ecosysDOP_diaz_uptakemmol/m^3/sDiazotroph DOP Uptake
256ecosysPO4_diaz_uptakemmol/m^3/sDiazotroph PO4 Uptake
257ecosysgraze_diazmmol/m^3/sDiazotroph Grazing
258ecosysgraze_diaz_pocmmol/m^3/sDiazotroph Grazing to POC
259ecosysgraze_diaz_docmmol/m^3/sDiazotroph Grazing to DOC
260ecosysgraze_diaz_zoommol/m^3/sDiazotroph Grazing to ZOO
261ecosysdiaz_lossmmol/m^3/sDiazotroph Loss
262ecosysdiaz_loss_pocmmol/m^3/sDiazotroph Loss to POC
263ecosysdiaz_loss_docmmol/m^3/sDiazotroph Loss to DOC
264ecosysdiaz_aggmmol/m^3/sDiazotroph Aggregation
265ecosysdiaz_Nfixmmol/m^3/sDiazotroph N Fixation
266ecosysbSi_formmmol/m^3/sTotal Si Uptake
267ecosysCaCO3_formmmol/m^3/sTotal CaCO3 Formation
268ecosysNfixmmol/m^3/sTotal N Fixation
269ecosyszoo_lossmmol/m^3/sZooplankton Loss
270ecosyszoo_loss_pocmmol/m^3/sZooplankton Loss to POC
271ecosyszoo_loss_docmmol/m^3/sZooplankton Loss to DOC
272ecosysgraze_zoommol/m^3/sZooplankton grazing loss
273ecosysgraze_zoo_pocmmol/m^3/sZooplankton grazing loss to POC
274ecosysgraze_zoo_docmmol/m^3/sZooplankton grazing loss to DOC
275ecosysgraze_zoo_zoommol/m^3/sZooplankton grazing loss to ZOO
276ecosysx_graze_zoommol/m^3/sZooplankton grazing gain
277cisoCISO_PO13C_FLUX_INmmol/m^3 cm/sPO13C Flux into Cell
278cisoCISO_PO13C_PRODmmol/m^3/sPO13C Production
279cisoCISO_PO13C_REMINmmol/m^3/sPO13C Remineralization
280cisoCISO_DO13Ctot_prodmmol/m^3/sDO13Ctot Production
281cisoCISO_DO13Ctot_reminmmol/m^3/sDO13Ctot Remineralization
282cisoCISO_Ca13CO3_FLUX_INmmol/m^3 cm/sCa13CO3 flux into cell
283cisoCISO_Ca13CO3_PRODmmol/m^3/sCa13CO3 Production
284cisoCISO_Ca13CO3_REMINmmol/m^3/sCa13CO3 Remineralization
285cisoCISO_photo13C_TOTmmol/m^3/sTotal 13C Fixation
286cisoCISO_DIC_d13Cpermild13C of DIC
287cisoCISO_DOCtot_d13Cpermild13C of DOCtot
288cisoCISO_zoototC_d13Cpermild13C of total zooC
289cisoCISO_PO14C_FLUX_INmmol/m^3 cm/sPO14C Flux into Cell
290cisoCISO_PO14C_PRODmmol/m^3/sPO14C Production
291cisoCISO_PO14C_REMINmmol/m^3/sPO14C Remineralization
292cisoCISO_DO14Ctot_prodmmol/m^3/sDO14Ctot Production
293cisoCISO_DO14Ctot_reminmmol/m^3/sDO14Ctot Remineralization
294cisoCISO_Ca14CO3_FLUX_INmmol/m^3 cm/sCa14CO3 flux into cell
295cisoCISO_Ca14CO3_PRODmmol/m^3/sCa14CO3 Production
296cisoCISO_Ca14CO3_REMINmmol/m^3/sCa14CO3 Remineralization
297cisoCISO_photo14C_TOTmmol/m^3/sTotal 14C Fixation
298cisoCISO_DIC_d14Cpermild14C of DIC
299cisoCISO_DOCtot_d14Cpermild14C of DOCtot
300cisoCISO_zoototC_d14Cpermild14C of total zooC
301cisoCISO_photo13C_TOT_zintmmol/m^3 cm/sTotal 13C Fixation Vertical Integral
302cisoCISO_photo14C_TOT_zintmmol/m^3 cm/sTotal 14C Fixation Vertical Integral
303cisoCISO_Jint_13Ctotmmol/m^3 cm/s13Ctot Source Sink Term Vertical Integral
304cisoCISO_Jint_14Ctotmmol/m^3 cm/s14Ctot Source Sink Term Vertical Integral
305cisoCISO_sp_Ca13CO3_formmmol/m^3/sSmall Phyto Ca13CO3 Formation
306cisoCISO_sp_Ca13CO3_form_zintmmol/m^3 cm/sSmall Phyto Ca13CO3 Formation Vertical Integral
307cisoCISO_sp_Ca14CO3_formmmol/m^3/sSmall Phyto Ca14CO3 Formation
308cisoCISO_sp_Ca14CO3_form_zintmmol/m^3 cm/sSmall Phyto Ca14CO3 Formation Vertical Integral
309cisoCISO_autotrophCaCO3_d13C_spmmol/m^3/sSmall Phyto d13C of CaCO3
310cisoCISO_autotrophCaCO3_d14C_spmmol/m^3/sSmall Phyto d14C of CaCO3
311cisoCISO_photo13C_spmmol/m^3/sSmall Phyto 13C Fixation
312cisoCISO_photo14C_spmmol/m^3/sSmall Phyto 14C Fixation
313cisoCISO_photo13C_sp_zintmmol/m^3 cm/sSmall Phyto 13C Fixation Vertical Integral
314cisoCISO_photo14C_sp_zintmmol/m^3 cm/sSmall Phyto 14C Fixation Vertical Integral
315cisoCISO_eps_autotroph_sppermilSmall Phyto discrimination factor (eps)
316cisoCISO_d13C_sppermilSmall Phyto d13C
317cisoCISO_d14C_sppermilSmall Phyto d14C
318cisoCISO_mui_to_co2star_spm^3/mmol/sSmall Phyto instanteous growth rate over [CO2*]
319cisoCISO_photo13C_diatmmol/m^3/sDiatom 13C Fixation
320cisoCISO_photo14C_diatmmol/m^3/sDiatom 14C Fixation
321cisoCISO_photo13C_diat_zintmmol/m^3 cm/sDiatom 13C Fixation Vertical Integral
322cisoCISO_photo14C_diat_zintmmol/m^3 cm/sDiatom 14C Fixation Vertical Integral
323cisoCISO_eps_autotroph_diatpermilDiatom discrimination factor (eps)
324cisoCISO_d13C_diatpermilDiatom d13C
325cisoCISO_d14C_diatpermilDiatom d14C
326cisoCISO_mui_to_co2star_diatm^3/mmol/sDiatom instanteous growth rate over [CO2*]
327cisoCISO_photo13C_diazmmol/m^3/sDiazotroph 13C Fixation
328cisoCISO_photo14C_diazmmol/m^3/sDiazotroph 14C Fixation
329cisoCISO_photo13C_diaz_zintmmol/m^3 cm/sDiazotroph 13C Fixation Vertical Integral
330cisoCISO_photo14C_diaz_zintmmol/m^3 cm/sDiazotroph 14C Fixation Vertical Integral
331cisoCISO_eps_autotroph_diazpermilDiazotroph discrimination factor (eps)
332cisoCISO_d13C_diazpermilDiazotroph d13C
333cisoCISO_d14C_diazpermilDiazotroph d14C
334cisoCISO_mui_to_co2star_diazm^3/mmol/sDiazotroph instanteous growth rate over [CO2*]
335cisoCISO_eps_aq_gpermilEquilibrium fractionation (CO2_gaseous <-> CO2_aq)
336cisoCISO_eps_dic_gpermilEquilibrium fractionation between total DIC and gaseous CO2
337cisocalcToSed_13Cnmol/cm^2/sCa13CO3 Flux to Sediments
338cisopocToSed_13Cnmol/cm^2/sPO13C Flux to Sediments
339cisocalcToSed_14Cnmol/cm^2/sCa14CO3 Flux to Sediments
340cisopocToSed_14Cnmol/cm^2/sPO14C Flux to Sediments
341ecosysPO4_RESTORE_TENDmmol/m^3/sDissolved Inorganic Phosphate Restoring Tendency
342ecosysNO3_RESTORE_TENDmmol/m^3/sDissolved Inorganic Nitrate Restoring Tendency
343ecosysSiO3_RESTORE_TENDmmol/m^3/sDissolved Inorganic Silicate Restoring Tendency
344ecosysNH4_RESTORE_TENDmmol/m^3/sDissolved Ammonia Restoring Tendency
345ecosysFe_RESTORE_TENDmmol/m^3/sDissolved Inorganic Iron Restoring Tendency
346ecosysLig_RESTORE_TENDmmol/m^3/sIron Binding Ligand Restoring Tendency
347ecosysO2_RESTORE_TENDmmol/m^3/sDissolved Oxygen Restoring Tendency
348ecosysDIC_RESTORE_TENDmmol/m^3/sDissolved Inorganic Carbon Restoring Tendency
349ecosysDIC_ALT_CO2_RESTORE_TENDmmol/m^3/s“Dissolved Inorganic CarbonAlternative CO2 Restoring Tendency”
350ecosysALK_RESTORE_TENDmeq/m^3/sAlkalinity Restoring Tendency
351ecosysALK_ALT_CO2_RESTORE_TENDmeq/m^3/s“AlkalinityAlternative CO2 Restoring Tendency”
352ecosysDOC_RESTORE_TENDmmol/m^3/sDissolved Organic Carbon Restoring Tendency
353ecosysDON_RESTORE_TENDmmol/m^3/sDissolved Organic Nitrogen Restoring Tendency
354ecosysDOP_RESTORE_TENDmmol/m^3/sDissolved Organic Phosphorus Restoring Tendency
355ecosysDOPr_RESTORE_TENDmmol/m^3/sRefractory DOP Restoring Tendency
356ecosysDONr_RESTORE_TENDmmol/m^3/sRefractory DON Restoring Tendency
357ecosysDOCr_RESTORE_TENDmmol/m^3/sRefractory DOC Restoring Tendency
358ecosyszooC_RESTORE_TENDmmol/m^3/sZooplankton Carbon Restoring Tendency
359ecosysspChl_RESTORE_TENDmg/m^3/sSmall Phyto Chlorophyll Restoring Tendency
360ecosysspC_RESTORE_TENDmmol/m^3/sSmall Phyto Carbon Restoring Tendency
361ecosysspP_RESTORE_TENDmmol/m^3/sSmall Phyto Phosphorus Restoring Tendency
362ecosysspFe_RESTORE_TENDmmol/m^3/sSmall Phyto Iron Restoring Tendency
363ecosysspCaCO3_RESTORE_TENDmmol/m^3/sSmall Phyto CaCO3 Restoring Tendency
364ecosysdiatChl_RESTORE_TENDmg/m^3/sDiatom Chlorophyll Restoring Tendency
365ecosysdiatC_RESTORE_TENDmmol/m^3/sDiatom Carbon Restoring Tendency
366ecosysdiatP_RESTORE_TENDmmol/m^3/sDiatom Phosphorus Restoring Tendency
367ecosysdiatFe_RESTORE_TENDmmol/m^3/sDiatom Iron Restoring Tendency
368ecosysdiatSi_RESTORE_TENDmmol/m^3/sDiatom Silicon Restoring Tendency
369ecosysdiazChl_RESTORE_TENDmg/m^3/sDiazotroph Chlorophyll Restoring Tendency
370ecosysdiazC_RESTORE_TENDmmol/m^3/sDiazotroph Carbon Restoring Tendency
371ecosysdiazP_RESTORE_TENDmmol/m^3/sDiazotroph Phosphorus Restoring Tendency
372ecosysdiazFe_RESTORE_TENDmmol/m^3/sDiazotroph Iron Restoring Tendency
373cisoDI13C_RESTORE_TENDmmol/m^3/sDissolved Inorganic Carbon-13 Restoring Tendency
374cisoDO13Ctot_RESTORE_TENDmmol/m^3/sDissolved Organic Carbon-13 (semi-labile+refractory) Restoring Tendency
375cisoDI14C_RESTORE_TENDmmol/m^3/sDissolved Inorganic Carbon-14 Restoring Tendency
376cisoDO14Ctot_RESTORE_TENDmmol/m^3/sDissolved Organic Carbon-14 (semi-labile+refractory) Restoring Tendency
377cisozootot13C_RESTORE_TENDmmol/m^3/sZooplankton Carbon-13 (sum over all zooplankton) Restoring Tendency
378cisozootot14C_RESTORE_TENDmmol/m^3/sZooplankton Carbon-14 (sum over all zooplankton) Restoring Tendency
379cisosp13C_RESTORE_TENDmmol/m^3/sSmall Phyto Carbon-13 Restoring Tendency
380cisosp14C_RESTORE_TENDmmol/m^3/sSmall Phyto Carbon-14 Restoring Tendency
381cisospCa13CO3_RESTORE_TENDmmol/m^3/sSmall Phyto Ca13CO3 Restoring Tendency
382cisospCa14CO3_RESTORE_TENDmmol/m^3/sSmall Phyto Ca14CO3 Restoring Tendency
383cisodiat13C_RESTORE_TENDmmol/m^3/sDiatom Carbon-13 Restoring Tendency
384cisodiat14C_RESTORE_TENDmmol/m^3/sDiatom Carbon-14 Restoring Tendency
385cisodiaz13C_RESTORE_TENDmmol/m^3/sDiazotroph Carbon-13 Restoring Tendency
386cisodiaz14C_RESTORE_TENDmmol/m^3/sDiazotroph Carbon-14 Restoring Tendency
size (386 x num_lvls)“FIXME: many of this are scalermost are vector rank = number of levels.”FIXME: Very tedious
to transfer F90 structs
to/from Matlab. Instead
repeat scalers and transfer square array

About


Languages

Language:MATLAB 49.6%Language:Fortran 43.3%Language:Makefile 6.2%Language:Rich Text Format 1.0%