fcakyon / labelme2coco

Make your own dataset for object detection and transform the format to coco json format

Github PK Tool:Github PK Tool

Repository from Github https://github.com/fcakyon/labelme2cocoRepository from Github https://github.com/fcakyon/labelme2coco

labelme2coco's ContributorsNovDecJanFebMarAprMayJunJulAugSepOctNovSunMonTueWedThuFriSat

Downloads PyPI version CI

labelme2coco Python Package for Linux/MacOS/Windows

Make your own dataset for object detection/instance segmentation using labelme and transform the format to coco json format

Convert LabelMe annotations to COCO format in one step

labelme is a widely used is a graphical image annotation tool that supports classification, segmentation, instance segmentation and object detection formats. However, widely used frameworks/models such as Yolact/Solo, Detectron, MMDetection etc. requires COCO formatted annotations.

You can use this package to convert labelme annotations to COCO format.

Getting started

Installation

pip install labelme2coco

Usage

# import package
import labelme2coco

# set directory that contains labelme annotations and image files
labelme_folder = "tests/data/labelme_annot"

# set path for coco json to be saved
save_json_path = "tests/data/test_coco.json"

# convert labelme annotations to coco
labelme2coco.convert(labelme_folder, save_json_path)

About

Make your own dataset for object detection and transform the format to coco json format

License:GNU General Public License v3.0


Languages

Language:Python 100.0%