eflynn90 / tensorqtl

Ultrafast GPU-based QTL mapper

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

tensorQTL

tensorQTL is a GPU-based QTL mapper, enabling ~200-300 fold faster cis- and trans-QTL mapping compared to CPU-based implementations.

If you use tensorQTL in your research, please cite the following paper: Taylor-Weiner, Aguet, et al., bioRxiv, 2019.

Empirical beta-approximated p-values are computed as described in FastQTL (Ongen et al., 2016).

Install

You can install tensorQTL using pip:

pip3 install tensorqtl

or directly from this repository:

$ git clone git@github.com:broadinstitute/tensorqtl.git
$ cd tensorqtl
# set up virtual environment and install
$ virtualenv venv
$ source venv/bin/activate
(venv)$ pip install -r install/requirements.txt .

Requirements

tensorQTL requires an environment configured with a GPU. Instructions for setting up a virtual machine on Google Cloud Platform are provided here.

Input formats

tensorQTL requires three input files: genotypes, phenotypes, and covariates. Phenotypes must be provided in BED format (phenotypes x samples), and covariates as a text file (covariates x samples). Both are in the format used by FastQTL. Genotypes must currently be in PLINK format, and can be converted as follows:

plink2 --make-bed \
    --output-chr chrM \
    --vcf ${plink_prefix_path}.vcf.gz \
    --out ${plink_prefix_path}

Examples

For examples illustrating cis- and trans-QTL mapping, please see tensorqtl_examples.ipynb.

Running tensorQTL from the command line

This section describes how to run tensorQTL from the command line. For a full list of options, run

python3 -m tensorqtl --help

cis-QTL mapping

Phenotype-level summary statistics with empirical p-values:

python3 -m tensorqtl ${plink_prefix_path} ${expression_bed} ${prefix} \
    --covariates ${covariates_file} \
    --mode cis

All variant-phenotype associations:

python3 -m tensorqtl ${plink_prefix_path} ${expression_bed} ${prefix} \
    --covariates ${covariates_file} \
    --mode cis_nominal

This will generate a parquet file for each chromosome. These files can be read using pandas:

import pandas as pd
df = pd.read_parquet(file_name)

Conditionally independent cis-QTL (as described in GTEx Consortium, 2017):

python3 -m tensorqtl ${plink_prefix_path} ${expression_bed} ${prefix} \
    --covariates ${covariates_file} \
    --cis_results ${cis_results_file} \
    --mode cis_independent

trans-QTL mapping

python3 -m tensorqtl ${plink_prefix_path} ${expression_bed} ${prefix} \
    --covariates ${covariates_file} \
    --mode trans

For trans-QTL mapping, tensorQTL generates sparse output by default (associations with p-value < 1e-5). cis-associations are filtered out. The output is in parquet format, with four columns: phenotype_id, variant_id, pval, maf.

Running tensorQTL as a Python module

TensorQTL can also be run as a module to more efficiently run multiple analyses:

import pandas as pd
import tensorqtl
from tensorqtl import genotypeio, cis, trans

Loading input files

Load phenotypes and covariates:

phenotype_df, phenotype_pos_df = tensorqtl.read_phenotype_bed(phenotype_bed_file)
covariates_df = pd.read_csv(covariates_file, sep='\t', index_col=0).T  # samples x covariates

Genotypes can be loaded as follows, where plink_prefix_path is the path to the VCF in PLINK format:

pr = genotypeio.PlinkReader(plink_prefix_path)
# load genotypes and variants into data frames
genotype_df = pd.DataFrame(pr.get_all_genotypes(), index=pr.bim['snp'], columns=pr.fam['iid'])
variant_df = pr.bim.set_index('snp')[['chrom', 'pos']]

To save memory when using genotypes for a subset of samples, you can specify the samples as follows (this is not strictly necessary, since tensorQTL will select the relevant samples from genotype_df otherwise):

pr = genotypeio.PlinkReader(plink_prefix_path, select_samples=phenotype_df.columns)

cis-QTL mapping: permutations

cis_df = cis.map_cis(genotype_df, variant_df, phenotype_df, phenotype_pos_df, covariates_df)
tensorqtl.calculate_qvalues(cis_df, qvalue_lambda=0.85)

cis-QTL mapping: summary statistics for all variant-phenotype pairs

cis.map_nominal(genotype_df, variant_df, phenotype_df, phenotype_pos_df,
                covariates_df, prefix, output_dir='.')

cis-QTL mapping: conditionally independent QTLs

This requires the output from the permutations step (map_cis) above.

indep_df = cis.map_independent(genotype_df, variant_df, cis_df,
                               phenotype_df, phenotype_pos_df, covariates_df)

cis-QTL mapping: interactions

Instead of mapping the standard linear model (p ~ g), includes an interaction term (p ~ g + i + gi) and returns full summary statistics for this model. The interaction term is a pd.Series mapping sample ID to interaction value. With the run_eigenmt=True option, eigenMT-adjusted p-values are computed.

cis.map_nominal(genotype_df, variant_df, phenotype_df, phenotype_pos_df, covariates_df, prefix,
                interaction_s=interaction_s, maf_threshold_interaction=0.05,
                group_s=None, run_eigenmt=True, output_dir='.')

trans-QTL mapping

trans_df = trans.map_trans(genotype_df, phenotype_df, covariates_df, return_sparse=True)

About

Ultrafast GPU-based QTL mapper

License:BSD 3-Clause "New" or "Revised" License


Languages

Language:Python 82.2%Language:Jupyter Notebook 15.1%Language:Dockerfile 1.7%Language:Shell 1.0%