dtzfast's starred repositories
interview
📚 C/C++ 技术面试基础知识总结,包括语言、程序库、数据结构、算法、系统、网络、链接装载库等知识及面试经验、招聘、内推等信息。This repository is a summary of the basic knowledge of recruiting job seekers and beginners in the direction of C/C++ technology, including language, program library, data structure, algorithm, system, network, link loading library, interview experience, recruitment, recommendation, etc.
CapsNet-Tensorflow
A Tensorflow implementation of CapsNet(Capsules Net) in paper Dynamic Routing Between Capsules
awesome-decision-tree-papers
A collection of research papers on decision, classification and regression trees with implementations.
GraphNeuralNetwork
《深入浅出图神经网络:GNN原理解析》配套代码
awesome-capsule-networks
A curated list of awesome resources related to capsule networks
dev-tester
测试开发面试资源、复习资料汇总
Learning
自己整理了一些网上和书籍中的知识与笔记,来应对技术面试可能遇到的一些问题,包括算法、操作系统、计算机网络、Java、C++、Python、Go。概念不是最重要的!概念不是最重要的!概念不是最重要的!练习题才是!重要的事情说三遍,概念是不是看了很多遍,看几遍忘几遍,题目做过几遍,是不是印象很深,精华是题目,笔者在大量练习后摘录了书籍、牛客网、赛码网、W3C、CSDN等各种渠道的练习题,较为基础的这里就不录入了,主要录入一些易混淆,不容易理解的题目。作者也不喜欢重复造轮子,某些知识点的解释有比较详细的博客,作者就简单引用了,只有作者觉得找不到解释较好的博客时,作者会自己写一篇然后引用,限于篇幅,具体还请点击链接详细了解。
Non-Local-NN-Pytorch
PyTorch implementation of Non-Local Neural Networks (https://arxiv.org/pdf/1711.07971.pdf)
EEG-Motor-Imagery-Classification-CNNs-TensorFlow
EEG Motor Imagery Tasks Classification (by Channels) via Convolutional Neural Networks (CNNs) based on TensorFlow
learn-java
recording the code while learning Java :blue_book:
EEG_RNN_Conv_Learning
Learning Representations From EEG With Deep Recurrent-Convolutional Neural Networks
Self-Attention
simple implements Non-Local Neural Networks for image classification(Fashion-Mnist)
pre-epileptic-EEG-PSD-Connectivity
Analisi spettrale, di connettività e classificazione del segnale EEG nelle crisi focali e generalizzate
jojos-matlab-toolbox
Matlab toolbox comprising a number of useful scripts and functions for EEG/fMRI analysis.
seizure-prediction
This is the seizure prediction project that I implemented. I received a Synopsys Science Fair First Prize for it and qualified for the California State Science Fair. Part of the code is based on the following paper: Pouya Bashivan, Irina Rish, Mohammed Yeasin, and Noel Codella. Learning representations from eeg with deep recurrent convolutional neural networks. In Proceedings of the International Conference on Learning Representations, 2016. To run the code, first download the data files from https://www.kaggle.com/c/seizure-detection to data/. Then, create the directory processed_data and run preprocess.py. Afterwards, run run_trainer.py.
EEGLearn-master
tesst
various_loss_and_intermedia_supervision
various loss and intermedia supervision and supplement loss