A minimal PyTorch implementation of YOLOv4.
-
Paper Yolo v4: https://arxiv.org/abs/2004.10934
-
Source code:https://github.com/AlexeyAB/darknet
-
More details: http://pjreddie.com/darknet/yolo/
-
Inference
-
Train
- Mocaic
├── README.md
├── dataset.py dataset
├── demo.py demo to run pytorch --> tool/darknet2pytorch
├── darknet2onnx.py tool to convert into onnx --> tool/darknet2pytorch
├── demo_onnx.py demo to run the converted onnx model
├── models.py model for pytorch
├── train.py train models.py
├── cfg.py cfg.py for train
├── cfg cfg --> darknet2pytorch
├── data
├── weight --> darknet2pytorch
├── tool
│ ├── camera.py a demo camera
│ ├── coco_annotatin.py coco dataset generator
│ ├── config.py
│ ├── darknet2pytorch.py
│ ├── region_loss.py
│ ├── utils.py
│ └── yolo_layer.py
- baidu(https://pan.baidu.com/s/1dAGEW8cm-dqK14TbhhVetA Extraction code:dm5b)
- google(https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT)
you can use darknet2pytorch to convert it yourself, or download my converted model.
- baidu
- yolov4.pth(https://pan.baidu.com/s/1ZroDvoGScDgtE1ja_QqJVw Extraction code:xrq9)
- yolov4.conv.137.pth(https://pan.baidu.com/s/1ovBie4YyVQQoUrC3AY0joA Extraction code:kcel)
- google
- yolov4.pth(https://drive.google.com/open?id=1wv_LiFeCRYwtpkqREPeI13-gPELBDwuJ)
- yolov4.conv.137.pth(https://drive.google.com/open?id=1fcbR0bWzYfIEdLJPzOsn4R5mlvR6IQyA)
use yolov4 to train your own data
-
Download weight
-
Transform data
For coco dataset,you can use tool/coco_annotatin.py.
# train.txt image_path1 x1,y1,x2,y2,id x1,y1,x2,y2,id x1,y1,x2,y2,id ... image_path2 x1,y1,x2,y2,id x1,y1,x2,y2,id x1,y1,x2,y2,id ... ... ...
-
Train
you can set parameters in cfg.py.
python train.py -g [GPU_ID] -dir [Dataset direction] ...
- download model weight https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT
python demo.py <cfgFile> <weightFile> <imgFile>
-
Pytorch version Recommended: 1.4.0
-
Install onnxruntime
pip install onnxruntime
-
Run python script to generate onnx model and run the demo
python demo_onnx.py <cfgFile> <weightFile> <imageFile> <batchSize>
This script will generate 2 onnx models.
- One is for running the demo (batch_size=1)
- The other one is what you want to generate (batch_size=batchSize)
-
TensorRT version Recommended: 7.0, 7.1
-
Run the following command to convert VOLOv4 onnx model into TensorRT engine
trtexec --onnx=<onnx_file> --explicitBatch --saveEngine=<tensorRT_engine_file> --workspace=<size_in_megabytes> --fp16
- Note: If you want to use int8 mode in conversion, extra int8 calibration is needed.
-
Run the demo (this demo here only works when batchSize=1)
python demo_trt.py <tensorRT_engine_file> <input_image> <input_H> <input_W>
- Note1: input_H and input_W should agree with the input size in the original darknet cfg file as well as the latter onnx file.
- Note2: extra NMS operations are needed for the tensorRT output. This demo uses TianXiaomo's NMS code from
tool/utils.py
.
-
First:Conversion to ONNX
tensorflow >=2.0
1: Thanks:github:https://github.com/onnx/onnx-tensorflow
2: Run git clone https://github.com/onnx/onnx-tensorflow.git && cd onnx-tensorflow Run pip install -e .
Note:Errors will occur when using "pip install onnx-tf", at least for me,it is recommended to use source code installation
Reference:
- https://github.com/eriklindernoren/PyTorch-YOLOv3
- https://github.com/marvis/pytorch-caffe-darknet-convert
- https://github.com/marvis/pytorch-yolo3
@article{yolov4,
title={YOLOv4: YOLOv4: Optimal Speed and Accuracy of Object Detection},
author={Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao},
journal = {arXiv},
year={2020}
}