doaa450 / Finding-donors-classifier

Supervised learning classifier that classify people based on their income, Understanding an individual's income can help a non-profit better understand how large of a donation to request, or whether or not they should reach out to begin with.

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Supervised Learning

Project: Finding Donors for CharityML

Install

This project requires Python 3.x and the following Python libraries installed:

You will also need to have software installed to run and execute an iPython Notebook

We recommend students install Anaconda, a pre-packaged Python distribution that contains all of the necessary libraries and software for this project.

Code

Template code is provided in the finding_donors.ipynb notebook file. You will also be required to use the included visuals.py Python file and the census.csv dataset file to complete your work. While some code has already been implemented to get you started, you will need to implement additional functionality when requested to successfully complete the project. Note that the code included in visuals.py is meant to be used out-of-the-box and not intended for students to manipulate. If you are interested in how the visualizations are created in the notebook, please feel free to explore this Python file.

Run

In a terminal or command window, navigate to the top-level project directory finding_donors/ (that contains this README) and run one of the following commands:

ipython notebook finding_donors.ipynb

or

jupyter notebook finding_donors.ipynb

This will open the iPython Notebook software and project file in your browser.

Data

The modified census dataset consists of approximately 32,000 data points, with each datapoint having 13 features. This dataset is a modified version of the dataset published in the paper "Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid", by Ron Kohavi. You may find this paper online, with the original dataset hosted on UCI.

Features

  • age: Age
  • workclass: Working Class (Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked)
  • education_level: Level of Education (Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool)
  • education-num: Number of educational years completed
  • marital-status: Marital status (Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse)
  • occupation: Work Occupation (Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces)
  • relationship: Relationship Status (Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried)
  • race: Race (White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black)
  • sex: Sex (Female, Male)
  • capital-gain: Monetary Capital Gains
  • capital-loss: Monetary Capital Losses
  • hours-per-week: Average Hours Per Week Worked
  • native-country: Native Country (United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands)

Target Variable

  • income: Income Class (<=50K, >50K)

That was my second project in my machine learning engineer nanodegree and it's meant to the following:

In this project, you will employ several supervised algorithms of your choice to accurately model individuals' income using data collected from the 1994 U.S. Census. You will then choose the best candidate algorithm from preliminary results and further optimize this algorithm to best model the data. Your goal with this implementation is to construct a model that accurately predicts whether an individual makes more than $50,000. This sort of task can arise in a non-profit setting, where organizations survive on donations. Understanding an individual's income can help a non-profit better understand how large of a donation to request, or whether or not they should reach out to begin with. While it can be difficult to determine an individual's general income bracket directly from public sources, we can (as we will see) infer this value from other publically available features.

The dataset for this project originates from the UCI Machine Learning Repository here: https://archive.ics.uci.edu/ml/datasets/Census+Income. The datset was donated by Ron Kohavi and Barry Becker, after being published in the article "Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid". You can find the article by Ron Kohavi online here (https://www.aaai.org/Papers/KDD/1996/KDD96-033.pdf). The data we investigate here consists of small changes to the original dataset, such as removing the 'fnlwgt' feature and records with missing or ill-formatted entries.

  • I gathered the data, cleaned it, preprocessed it, choosed the model based on several algorithms performance analytics, then tuned the classifier using grid search and cross validation and obtained the best model possible.

  • The final f-beta score was approximately 75% and the accuracy score was 87%.

About

Supervised learning classifier that classify people based on their income, Understanding an individual's income can help a non-profit better understand how large of a donation to request, or whether or not they should reach out to begin with.


Languages

Language:HTML 69.5%Language:Jupyter Notebook 29.7%Language:Python 0.8%