dev-zzo / dumpvdl2

A lightweight, standalone VDL Mode 2 message decoder and protocol analyzer

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

dumpvdl2

dumpvdl2 is a lightweight, standalone VDL Mode 2 message decoder and protocol analyzer.

Features

  • Runs under Linux (tested on: x86, x86-64, Raspberry Pi)
  • Supports following SDR hardware:
  • Decodes up to 8 VDL2 channels simultaneously
  • Outputs messages to standard output or to a file (with optional daily or hourly file rotation)
  • Outputs ACARS messages to PlanePlotter over UDP/IP socket
  • Supports message filtering by type or direction (uplink, downlink)
  • Outputs decoding statistics using Etsy StatsD protocol

Example

dumpvdl2 screenshot

Protocol support status

  • AVLC - supported
  • ACARS over AVLC - supported
  • ISO 8208 (X.25) control packets - supported
  • ISO 8473 (CLNP) - partially supported (CLNP header is skipped over without decoding)
  • ISO 9542 (ES-IS) - supported
  • ISO 10747 (IDRP) - partially supported (decoding of some less important attributes is TODO)
  • ISO 8073 (COTP) - supported
  • ICAO CM (Context Management) - supported
  • ICAO CPDLC (Controller-Pilot Data Link Communications) - supported
  • ICAO ADS-C - not supported

Installation

Install necessary dependencies (unless you have them already). Example for Debian / Raspbian:

    sudo apt-get install gcc make libtool libglib2.0-dev pkg-config
RTLSDR support (optional)

Install librtlsdr library (unless you have it already). Under Raspbian you can install packaged version:

    apt-get install librtlsdr-dev

or get the source from Git and compile by yourself:

    apt-get install git autoconf libusb-1.0-0-dev
    cd
    git clone git://git.osmocom.org/rtl-sdr.git
    cd rtl-sdr/
    autoreconf -i
    ./configure
    make
    sudo make install
    sudo ldconfig
    sudo cp $HOME/rtl-sdr/rtl-sdr.rules /etc/udev/rules.d/rtl-sdr.rules
Mirics support (optional)

Mirics support is based on open-source libmirisdr-4 library. Use it if you have a DVB-T receiver based on this chipset. SDRPlay RSP will also work (it's based on Mirics, after all), however if you have SDRPlay, it's probably better to use native closed-source driver instead (see next section). It supports more configuration options and reportedly gives better results on this hardware.

Install libmirisdr-4 library:

apt-get install git cmake libusb-1.0-0-dev
    cd
    git clone https://github.com/f4exb/libmirisdr-4.git
    cd libmirisdr-4
    ./build.sh
    cd build
    sudo make install
    sudo ldconfig
    sudo cp $HOME/libmirisdr-4/mirisdr.rules /etc/udev/rules.d/mirisdr.rules
SDRPLAY RSP1/2 support (optional)

Download and install API/hardware driver package from http://www.sdrplay.com/downloads/. Make sure you have selected the right hardware platform before downloading, otherwise the installer will fail.

Compiling dumpvdl2

Clone the dumpvdl2 repository:

    git clone https://github.com/szpajder/dumpvdl2.git
    cd dumpvdl2

If you only need RTLSDR support, it is enabled by default, so just type:

    make

Mirics support has to be explicitly enabled, like this:

    make WITH_MIRISDR=1

If you want Mirics only, you may disable RTLSDR support:

    make WITH_MIRISDR=1 WITH_RTLSDR=0

If you want SDRPLAY RSP1/2 only, you may disable RTLSDR support:

    make WITH_SDRPLAY=1 WITH_RTLSDR=0

Note: every time you decide to recompile with different WITH_* or USE_* options, clean the old build first using make clean.

For available command line options, run:

    ./dumpvdl2 --help
Optional: add support for statistics

Install statsd-c-client library from https://github.com/romanbsd/statsd-c-client:

    git clone https://github.com/romanbsd/statsd-c-client.git
    cd statsd-c-client
    make
    sudo make install
    sudo ldconfig

Compile dumpvdl2 as above, but add USE_STATSD=1:

    make USE_STATSD=1

Basic usage

RTL-SDR

Simpliest case on RTLSDR dongle - uses RTL device with index 0, sets the tuner gain to 40 dB and tuning correction to 42 ppm, listens to the default VDL2 frequency of 136.975 MHz, outputs to standard output:

    ./dumpvdl2 --rtlsdr 0 --gain 40 --correction 42

Device ID numbers are not persistent - they depend on the USB device order and the sequence which they were plugged in. You may specify the device by its serial number to get deterministic behavior:

    ./dumpvdl2 --rtlsdr 771111153 --gain 40 --correction 42

Use rtl_test utility to get serial numbers of your devices. dumpvdl2 will print them to the screen on startup as well.

If you want to listen to a different VDL2 channel, just give its frequency as a last parameter:

    ./dumpvdl2 --rtlsdr 0 --gain 40 --correction 42 136725000

dumpvdl2 can decode up to 8 VDL2 channels simultaneously. Just add them at the end:

    ./dumpvdl2 --rtlsdr 0 --gain 40 --correction 42 136725000 136975000 136875000

If your receiver has a large DC spike, you can set the center frequency a bit to the side of the desired channel frequency, like this:

    ./dumpvdl2 --rtlsdr 0 --gain 40 --correction 42 --centerfreq 136955000
Mirics

Mirics is similar, however libmirisdr-4 library currently lacks support for configuring correction in ppm. If your receiver needs a non-zero correction, you can pass the appropriate value in Hertz, instead of ppm. Note: this value will be subtracted from the center frequency, so if your receiver tunes a bit too low, the parameter value shall be negative:

    ./dumpvdl2 --mirisdr 0 --gain 100 --correction -2500

Device serial number can be given instead of ID, the same way, as for RTLSDR receivers.

libmirisdr-4 supports two types of hardware: generic Mirics (0 - the default) and SDRPlay (1). SDRPlay users should add --hw-type 1 option. It uses frequency plans optimized for SDRPlay and reportedly gives better results than the default mode.

If you get error messages about lost samples on Raspberry Pi, try adding --usb-mode 1. This switches USB transfer mode from isochronous to bulk, which is usually enough to rectify this problem. If it does not help, it might be that your Pi is overloaded or not beefy enough for the task.

SDRPLAY RSP1/2 Native

SDRPlay RSP native driver supports several advanced configuration options:

  • switching antenna ports,
  • bias-t
  • notch filter on AM/FM
  • AGC

Type ./dumpvdl2 --help to find out all the options and their default values.

Example: start the program with antenna A selection, bias-t off and notch filter on:

    ./dumpvdl2 --sdrplay 0 --gain 80 --antenna A --biast 0 --notch-filter 1 136975000

Output options

  • Decoded messages are printed to standard output by default. You can direct them to a disk file instead:

      ./dumpvdl2 --output-file vdl2.log [other_options]
    
  • If you want the file to be automatically rotated on top of every hour, add --hourly option. The file name will be appended with _YYYYMMDDHH suffix. If file extension is present, it will be placed after the suffix.

  • If you prefer daily rotation, --daily option does just that. The file name suffix will be _YYYYMMDD in this case. If file extension is present, it will be placed after the suffix.

  • Add --utc option if you prefer UTC timestamps rather than local timezone in output and filenames.

  • Add --raw-frames option to display payload of AVLC frames in raw hex for debugging purposes.

Integration with Planeplotter

dumpvdl2 can send ACARS messages to Planeplotter, which in turn can extract aircraft position information from them and display blips on the map. First, configure your Planeplotter as follows:

  • Stop data processing (press 'Stop' button on the toolbar)

  • Go to Options / I/O Settings...

  • Tick 'UDP/IP Data from net'

  • Set 'UDP/IP local port' to some value (default is 9742)

  • Close the settings window by clicking OK and restart data processing

Supply dumpvdl2 with the address (or host name) and port where the Planeplotter is listening:

    ./dumpvdl2 --output-acars-pp 10.10.10.12:9742 [other_options]

That's all. Switch to 'Message view' in Planeplotter and look for incoming messages.

Message filtering

By default dumpvdl2 logs all decoded messages. You can use --msg-filter option to ignore things you don't want to see. If you do not want messages sent by ground stations, run the program like this:

    ./dumpvdl2 --msg-filter all,-uplink [other_options]

Or if you want to filter out empty ACARS messages, because they are boring, use this:

    ./dumpvdl2 --msg-filter all,-acars_nodata [other_options]

For full list of supported filtering options, run:

    ./dumpvdl2 --msg-filter help

Refer to FILTERING_EXAMPLES.md file for more examples and details.

Statistics

The program does not calculate statistics by itself. Instead, it sends metric values (mostly counters) to the external collector using Etsy StatsD protocol. It's the collector's job to receive, aggregate, store and graph them. Some examples of software which can be used for this purpose:

  • Collectd is a statistics collection daemon which supports a lot of metric sources by using various plugins. It has a StatsD plugin which can receive statistics emitted by dumpvdl2, aggregate them and write to various time-series databases like RRD, Graphite, MongoDB or TSDB.

  • Graphite is a time-series database with powerful analytics and aggregation functions. Its graphing engine is quite basic, though.

  • Grafana is a sophisticated and elegant graphing solution supporting a variety of data sources.

Here is an example of some dumpvdl2 metrics being graphed by Grafana:

Statistics

Metrics are quite handy when tuning the antenna installation or receiving parameters (like gain or correction). Full list of currently supported counters can be found in statsd.c source file. dumpvdl2 produces a separate set of counters for each configured VDL2 channel.

To enable statistics just give dumpvdl2 your StatsD collector's hostname (or IP address) and UDP port number, for example:

    ./dumpvdl2 --statsd 10.10.10.15:1234 [other_options]

Processing recorded IQ data from file

The syntax is:

dumpvdl2 --iq-file <file_name> [--sample-format <sample_format>] [--oversample <oversample_rate>]
  [--centerfreq <center_frequency>] [vdl_freq_1] [vdl_freq_2] [...]

The symbol rate for VDL2 is 10500 symbols/sec. dumpvdl2 internal processing rate is 10 samples per symbol. Therefore the file must be recorded with sampling rate set to an integer multiple of 105000. Specify the multiplier value with --oversample option. The default value is 10, which is valid for files sampled as 1050000 samples/sec. For example, if you have recorded your file at 2100000 samples/sec, then use --oversample 20 (because 105000 * 20 = 2100000).

The program accepts raw data files without any header. Files produced by rtl_sdr and miri_sdr programs are perfectly valid input files. Different radios produce samples in different formats, though. dumpvdl2 currently supports following sample formats:

  • U8 - unsigned 8-bit samples. This is the format produced by rtl_sdr utility.
  • S16_LE - 16-bit signed, little endian. Produced by miri_sdr utility (by default).

Use --sample-format option to set the format. The default format is U8.

The program assumes that the VDL2 channel is located at baseband (0 Hz), ie. the center frequency of your radio was set to the VDL2 channel frequency during recording. If this is not the case, you have to provide correct center frequency and channel frequency. For example, if your receiver was tuned to 136.955 MHz during recording and you want to decode the VDL2 channel located at 136.975 MHz, then use this:

    dumpvdl2 --iq-file <file_name> --centerfreq 136955000 136975000

Putting it all together:

dumpvdl2 --iq-file iq.dat --sample-format S16_LE --oversample 13 --centerfreq 136955000 136975000 136725000

processes iq.dat file recorded at 1365000 samples/sec using 16-bit signed samples, with receiver center frequency set to 136.955 MHz. VDL2 channels located at 136.975 and 136.725 MHz will be decoded.

Frequently Asked Questions

What is VDL Mode 2?

VDL (VHF Data Link) Mode 2 is a communication protocol between aircraft and a network of ground stations. It has a higher capacity than ACARS and a lot more applications. More information can be found on Wikipedia or SigIdWiki.

Who uses it?

Civil airlines - not all, but many. Military? Umm, no.

What frequencies it runs on?

The most ubiquitous is 136.975 MHz (so called Common Signalling Channel). In some areas where the capacity of a single channel is not enough, 136.725, 136.775 or 136.875 is used as well. Because they are closely spaced, dumpvdl2 can receive all of them simultaneously with a single receiver.

Is it used in my area?

Yup, it's quite probable. Launch your favorite SDR Console (like SDRSharp or GQRX), tune 136.975 MHz and place your antenna outside (or near the window, at least). If you see short bursts every now and then, it's there.

What antenna shall I use?

VDL2 runs on VHF airband, so if you already have a dedicated antenna for ACARS or airband voice, it will be perfect for VDL2. However VDL2 transmissions are not very powerful, so do not expect thousands of messages per hour, if your antenna is located indoors. If you have already played with ADS-B, you know, what to do - put the antenna outside and high with unobstructed sky view, use short and good quality feeder cable, shield your radio from external RF interference.

Two hours straight and zero messages received. What's wrong?

It basically comes down to three things:

The signal has to be strong enough (preferably 20 dB over noise floor, or better)
  • set your tuner gain quite high. I get good results with 40 dB for RTLSDR and 100 dB for Mirics dongles. 75-85 dB is reported to work well on SDRPlay. However, it depends on the used antenna. But do not be tempted to crank the gain up to the max. Keep your noise floor as low as possible, because higher noise yields higher bit error rate.

  • check SDR Console with the same gain setting - do you see data bursts clearly? (they are very short, like pops).

  • if your DC spike is very high, set the center frequency manually to dodge it (use --centerfreq option).

  • RTL dongles are cheap - some of them have higher noise figure than others. If you have several dongles at hand, just try another one.

To verify that the signal strength is enough for the squelch to open, do the following:

  • Go to dumpvdl2 source directory

  • Recompile with debug output enabled:

      make clean
      make <your_make_options> DEBUG=1
    
  • Run the program as usual. It will display debugging info to standard error. Every second or so the current noise floor estimate for each configured channel will be printed:

process_samples(): 136975000: noise_floor: -43.8 dBFS
process_samples(): 136975000: noise_floor: -42.1 dBFS
process_samples(): 136975000: noise_floor: -42.3 dBFS
  • If you only see these lines and nothing else, it means there is no transmission on the configured channel - or there is, but it's not strong enough for the squelch to open. If you see a lot of other debug messages, that's good, they describe various stages of frame decoding and you can figure out, how it's doing and where it fails. However if the squelch opens all the time, several times a second and there are still no messages, it means your gain is probably set too high and the receiver front end is saturated. Reduce the gain a bit (like 1-2 dB) and see if it helps.
Tuned frequency has to be correct
  • initially, just don't set it manually, use the default of 136.975 MHz.
PPM correction setting has to be accurate
  • oscillators in cheap receivers are not 100% accurate. It is usually necessary to introduce manual correction to get precise tuning. There is no one-size-fits-all correction value - it is receiver-specific. See next question.
How do I estimate PPM correction value for my dongle?

Method 1: use rtl_test utility which comes with librtlsdr library. Run it with -p option and observe the output:

    root@linux:~ # rtl_test -p
    Found 1 device(s):
      0:  Realtek, RTL2838UHIDIR, SN: 00000002

    Using device 0: Generic RTL2832U OEM
    Found Rafael Micro R820T tuner
    Supported gain values (29): 0.0 0.9 1.4 2.7 3.7 7.7 8.7 12.5 14.4 15.7 16.6 19.7 20.7 22.9 25.4 28.0 29.7 32.8 33.8 36.4 37.2 38.6 40.2 42.1 43.4 43.9 44.5 48.0 49.6
    [R82XX] PLL not locked!
    Sampling at 2048000 S/s.
    Reporting PPM error measurement every 10 seconds...
    Press ^C after a few minutes.
    Reading samples in async mode...
    real sample rate: 2048207 current PPM: 101 cumulative PPM: 101
    real sample rate: 2048159 current PPM: 78 cumulative PPM: 89
    real sample rate: 2048137 current PPM: 67 cumulative PPM: 81
    real sample rate: 2048184 current PPM: 90 cumulative PPM: 84
    real sample rate: 2048163 current PPM: 80 cumulative PPM: 83
    real sample rate: 2048165 current PPM: 81 cumulative PPM: 82
    real sample rate: 2048140 current PPM: 69 cumulative PPM: 81
    real sample rate: 2048178 current PPM: 87 cumulative PPM: 81
    real sample rate: 2048168 current PPM: 82 cumulative PPM: 81
    real sample rate: 2048117 current PPM: 57 cumulative PPM: 79
    real sample rate: 2048202 current PPM: 99 cumulative PPM: 81
    real sample rate: 2048173 current PPM: 85 cumulative PPM: 81
    real sample rate: 2048164 current PPM: 80 cumulative PPM: 81
    real sample rate: 2048135 current PPM: 66 cumulative PPM: 80
    real sample rate: 2048179 current PPM: 88 cumulative PPM: 80
    real sample rate: 2048170 current PPM: 83 cumulative PPM: 81
    real sample rate: 2048167 current PPM: 82 cumulative PPM: 81
    real sample rate: 2048155 current PPM: 76 cumulative PPM: 80
    real sample rate: 2048160 current PPM: 78 cumulative PPM: 80
    real sample rate: 2048159 current PPM: 78 cumulative PPM: 80
    real sample rate: 2048154 current PPM: 75 cumulative PPM: 80
    real sample rate: 2048155 current PPM: 76 cumulative PPM: 80
    real sample rate: 2048181 current PPM: 89 cumulative PPM: 80

After a couple of minutes the cumulative PPM value converges to a stable reading. This is the value for your dongle. However, some people reported that this method is not always 100% accurate, so it's good to double-check with method 2 or 3.

Method 2: use your favorite SDR console (like SDRSharp, HDSDR, GQRX, etc). Tune it to a frequency of some local narrowband transmitter which transmits constantly (or very often) and is driven by a good frequency reference. A good example is an ATIS or AWOS channel from a local airport. Zoom in on the channel peak and adjust the correction value in the receiver settings to bring the peak exactly to the tuned frequency. If it's a voice channel, judge it by your ear - aim for the lowest possible background noise. See this video tutorial for reference: Frequency calibration in SDRSharp.

Method 3: use kalibrate-rtl utility. It estimates the correction value using GSM signal from nearby base stations. The estimate is quite accurate provided that you supply the program with approximate PPM offset value using -e option. This is even more important if your dongle has a large offset value (say, 50 or more).

What do these numbers in the message header mean?
    [2017-02-26 19:18:00 GMT] [136.975] [-18.9/-43.9 dBFS] [25.0 dB]

From left to right:

  • date and time with timezone.

  • channel frequency on which the message has been received.

  • signal power level (averaged over transmitter ramp-up stage, ie. 3 symbol periods after squelch opening). Full scale is 0 dB.

  • noise floor power level. Full scale is 0 dB.

  • signal to noise ratio (ie. signal power level minus noise floor power level).

What do these cryptic codewords in CPDLC messages mean?

These are object names and type names from ICAO ASN.1 module which describe the abstract syntax of CPDLC messages. Currently dumpvdl2 outputs the decoded ASN.1 structure with a generic printing routine. It's not very pretty, but it can print every possible type of message which complies to the standard. For now it looks like this:

ATCUplinkMessage ::= {
    header: ATCMessageHeader ::= {
        messageIdNumber: 4
        dateTime: DateTimeGroup ::= {
            date: Date ::= {
                year: 2017
                month: 6
                day: 5
            }
            timehhmmss: Timehhmmss ::= {
                hoursminutes: Time ::= {
                    hours: 12
                    minutes: 28
                }
                seconds: 59
            }
        }
        logicalAck: 0
    }
    messageData: ATCUplinkMessageData ::= {
        elementIds: elementIds ::= {
            uM74Position: fixName: FixName ::= {
                name: MIKOV
            }
        }
    }
}

This is a message sent by ATC to the crew. There is a fix name (MIKOV) in the message data section, but what's the actual clearance? To find out, look up the parameter name uM74Position in asn1/atn-cpdlc.asn1 file (in the dumpvdl2 source directory). The meaning of each parameter is given in the comment preceding it:

    -- PROCEED DIRECT TO [position]
    -- Urg(N)/Alr(M)/Resp(W/U)
    uM74Position  [74] Position,

So the clearance is: "proceed direct to MIKOV". Simple as that.

Pretty-printing of these messages will be implemented in a future release of dumpvdl2.

Can you add support for [my favourite SDR receiver type]?

Maybe. However do not expect me to purchase all SDRs available on the market just to make dumpvdl2 work with them. If your life absolutely depends on it, consider donating, or at least lending me the hardware for some time for development and testing.

Alternatively, if you can write code, you may do the work by yourself and submit it as a pull request. Most of the program code is hardware-agnostic anyway. Adding new device type basically comes down to the following:

  • dumpvdl2.c, dumpvdl2.h - add new input type and necessary command line options.

  • rtl.c, rtl.h - this is the code specific to the RTLSDR hardware. Make a copy and modify it to use the API of your SDR device. Or you can start off from mirics.c and mirics.h, if you prefer.

  • demod.c - if your SDR device uses a sample format other than 8-bit unsigned and 16-bit signed, it is necessary to write a routine which handles this format and converts the samples to signed float in the <-1;1> range. Refer to process_buf_uchar() and process_buf_short() routines for details.

  • Makefile - add new WITH_DEVICE compile time option and your new source files, add necessary LDLIBS, etc.

Can you add support for Windows?

To be honest, I don't use Windows very often and I don't know the programming intricacies of this OS. However, if you feel like you could port the code and maintain the port later on, please do so. Pull requests welcome.

Credits and thanks

I hereby express my gratitude to everybody who helped with the development and testing of dumpvdl2. Special thanks go to:

  • Fabrice Crohas
  • Dick van Noort
  • acarslogger
  • Piotr Herko, SP5XSB

License

Copyright (c) 2017 Tomasz Lemiech szpajder@gmail.com

Contains code from the following software projects:

  • libfec, (c) 2006 by Phil Karn, KA9Q

  • acarsdec, (c) 2015 Thierry Leconte

  • librtlsdr-keenerd, (c) 2013-2014 by Kyle Keen

  • asn1c, (c) 2003-2017 by Lev Walkin and contributors

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

About

A lightweight, standalone VDL Mode 2 message decoder and protocol analyzer

License:GNU General Public License v3.0


Languages

Language:C 97.8%Language:C++ 1.4%Language:Makefile 0.8%