deepweaver / MLPwithBP

two layer and three layer perceptron with back-prop

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

run

  • run a network with one hidden layer, execute python3 ./BPN.py
  • run a network with two hidden layer, execute python3 ./BPN_momentum.py

results

command python3 ./BPN_momentum.py generated results can be found in network_output.txt

accuracy of trainset = 0.98%
accuracy of validationset = 0.76%
testset accuracy is = 0.73%

explanation

data preprocessing

in utils.py, function Preprocessing(data, target): , basicly, def LoadData(filepath): loads the csv file and convert it (randomly) into a data list and a test list. Then feed the return value, which is data and target into Preprocessing(data, target):, in which I use processeddata = scale(np.array(data),-1,1) to scale all the input data into range [-1,1]. I also in this function, convert the target list into one-hot vectors. without random shuffling, the accuracy is only 42%

validating and testing

I devide the dataset into 70% training, 15% validation, 15% testing. Specifically, I use the following code:

    total_n = pdata.shape[1]
    traininput = pdata[:,:int(0.7*total_n)]
    traintarget = ptarget[:,:int(0.7*total_n)]
    validationinput = pdata[:,int(0.7*total_n):int(0.85*total_n)]
    validationtarget = ptarget[:,int(0.7*total_n):int(0.85*total_n)]
    testinput = pdata[:,int(0.85*total_n):]
    testtarget = ptarget[:,int(0.85*total_n):]

the pdata stands for "processed data", I split it using slicing of numpy 2d array.

weight initialization

    self.w1 = np.random.random((self.hidden_size1, self.input_size+1))*0.3
    self.w2 = np.random.random((self.hidden_size2, self.hidden_size1+1))*0.3
    self.w3 = np.random.random((self.output_size, self.hidden_size2+1))*0.3

I tested using zero weight as initial weights but later found random initialization is better. Theoratically a smaller weight is even better so I multiplied the random weight with a factor 0.3(I tested other numbers like 0.2,0.1,0.5 and found this 0.3 is the best choice)

learning rate

class BPN:
    def __init__(self, input_size=9, output_size=6, hidden_size1=90, hidden_size2=60, learning_rate=0.1):

When you initialize the bpn, you can set the learning rate and the default is 0.1. I also added def backward(self, t, learning_rate=None): learning rate adjustment in the update period, my intuition is that with the epoch getting larger, the learning rate should get smaller and smaller. So each backward in each epoch, I set bpn.backward(traintarget[:,i:i+1], learning_rate=1-e/epochs) the learning rate with 1-e/epochs. When the e is approaching epoch, the learning rate should be aproaching zero.

network structure

I tested network with one hidden layer with different layer sizes. However, the accuracy is below 0.7 . Then I decided to add another layer. According to paper Do Deep Nets Really Need to be Deep?, deeper layers is more ofter than not perform better than simply adding more hidden neurals in a shallow net. So I set the first hidden layer 90 neurons and the second with 60 neurons.

momentum and regularization

I tested momentum with alpha=0.1 and alpha=0.2 but it did not improve the result. I guess considering my learning rate is decreasing and the training epochs are large, it's not necessary to use momentum.

Final weight vectors

all three weight vectors are in file "./weights.txt"

generated class label

testbpn.py generates class label and output to file GlassData2.csv, the classified label is the last column

generate comfusion matrix

run compute_confusion_mat.py to generate confusion matrix but first you should pip3 install pycm==1.8 install pycm

Predict 1 2 3 5 6 7 Actual 1 66 3 1 0 0 0

2 5 69 1 0 0 1

3 4 1 12 0 0 0

5 0 1 0 11 0 1

6 0 0 0 0 9 0

7 2 0 0 0 0 27

Precision 0.85714 0.93243 0.85714 1.0 1.0 0.93103

Recall 0.94286 0.90789 0.70588 0.84615 1.0 0.93103 (for further info, look below)

Overall Statistics :

95% CI (0.86754,0.94554) AUNP 0.93321 AUNU 0.93335 Bennett S 0.88785 CBA 0.87468 Chi-Squared 855.92716 Chi-Squared DF 25 Conditional Entropy 0.49593 Cramer V 0.89439 Cross Entropy 2.18211 Gwet AC1 0.89055 Hamming Loss 0.09346 Joint Entropy 2.67246 KL Divergence 0.00558 Kappa 0.87216 Kappa 95% CI (0.81881,0.92551) Kappa No Prevalence 0.81308 Kappa Standard Error 0.02722 Kappa Unbiased 0.8721 Lambda A 0.85507 Lambda B 0.85401 Mutual Information 1.62493 NIR 0.35514 Overall ACC 0.90654 Overall CEN 0.1472 Overall J (5.01537,0.83589) Overall MCC 0.87305 Overall MCEN 0.22564 Overall RACC 0.26895 Overall RACCU 0.26931 P-Value 0.0 PPV Macro 0.92963 PPV Micro 0.90654 Phi-Squared 3.99966 RCI 0.74657 RR 35.66667 Reference Entropy 2.17653 Response Entropy 2.12086 SOA1(Landis & Koch) Almost Perfect SOA2(Fleiss) Excellent SOA3(Altman) Very Good SOA4(Cicchetti) Excellent Scott PI 0.8721 Standard Error 0.0199 TPR Macro 0.88897 TPR Micro 0.90654 Zero-one Loss 20

Class Statistics :

Classes 1 2 3 5 6 7 ACC(Accuracy) 0.92991 0.94393 0.96729 0.99065 1.0 0.98131 AUC(Area under the roc curve) 0.93323 0.93583 0.84787 0.92308 1.0 0.96011 AUCI(Auc value interpretation) Excellent Excellent Very Good Excellent Excellent Excellent BM(Informedness or bookmaker informedness) 0.86647 0.87166 0.69573 0.84615 1.0 0.92022 CEN(Confusion entropy) 0.16716 0.14125 0.25907 0.11502 0 0.11124 DOR(Diagnostic odds ratio) 199.5 262.2 234.0 None None 1235.25 DP(Discriminant power) 1.26802 1.33346 1.30622 None None 1.70457 DPI(Discriminant power interpretation) Limited Limited Limited None None Limited ERR(Error rate) 0.07009 0.05607 0.03271 0.00935 0.0 0.01869 F0.5(F0.5 score) 0.87302 0.92742 0.82192 0.96491 1.0 0.93103 F1(F1 score - harmonic mean of precision and sensitivity) 0.89796 0.92 0.77419 0.91667 1.0 0.93103 F2(F2 score) 0.92437 0.9127 0.73171 0.87302 1.0 0.93103 FDR(False discovery rate) 0.14286 0.06757 0.14286 0.0 0.0 0.06897 FN(False negative/miss/type 2 error) 4 7 5 2 0 2 FNR(Miss rate or false negative rate) 0.05714 0.09211 0.29412 0.15385 0.0 0.06897 FOR(False omission rate) 0.0292 0.05 0.025 0.00985 0.0 0.01081 FP(False positive/type 1 error/false alarm) 11 5 2 0 0 2 FPR(Fall-out or false positive rate) 0.07639 0.03623 0.01015 0.0 0.0 0.01081 G(G-measure geometric mean of precision and sensitivity) 0.89898 0.92008 0.77784 0.91987 1.0 0.93103 GI(Gini index) 0.86647 0.87166 0.69573 0.84615 1.0 0.92022 IS(Information score) 1.38979 1.39261 3.43161 4.04103 4.57154 2.78039 J(Jaccard index) 0.81481 0.85185 0.63158 0.84615 1.0 0.87097 LS(Lift score) 2.62041 2.62553 10.78992 16.46154 23.77778 6.87039 MCC(Matthews correlation coefficient) 0.84699 0.87703 0.76089 0.91532 1.0 0.92022 MCEN(Modified confusion entropy) 0.25544 0.22192 0.34437 0.17138 0 0.17301 MK(Markedness) 0.82795 0.88243 0.83214 0.99015 1.0 0.92022 N(Condition negative) 144 138 197 201 205 185 NLR(Negative likelihood ratio) 0.06187 0.09557 0.29713 0.15385 0.0 0.06972 NPV(Negative predictive value) 0.9708 0.95 0.975 0.99015 1.0 0.98919 P(Condition positive or support) 70 76 17 13 9 29 PLR(Positive likelihood ratio) 12.34286 25.05789 69.52941 None None 86.12069 PLRI(Positive likelihood ratio interpretation) Good Good Good None None Good POP(Population) 214 214 214 214 214 214 PPV(Precision or positive predictive value) 0.85714 0.93243 0.85714 1.0 1.0 0.93103 PRE(Prevalence) 0.3271 0.35514 0.07944 0.06075 0.04206 0.13551 RACC(Random accuracy) 0.1177 0.12281 0.0052 0.00312 0.00177 0.01836 RACCU(Random accuracy unbiased) 0.11796 0.12283 0.00525 0.00314 0.00177 0.01836 TN(True negative/correct rejection) 133 133 195 201 205 183 TNR(Specificity or true negative rate) 0.92361 0.96377 0.98985 1.0 1.0 0.98919 TON(Test outcome negative) 137 140 200 203 205 185 TOP(Test outcome positive) 77 74 14 11 9 29 TP(True positive/hit) 66 69 12 11 9 27 TPR(Sensitivity, recall, hit rate, or true positive rate) 0.94286 0.90789 0.70588 0.84615 1.0 0.93103 Y(Youden index) 0.86647 0.87166 0.69573 0.84615 1.0 0.92022 dInd(Distance index) 0.0954 0.09898 0.29429 0.15385 0.0 0.06981 sInd(Similarity index) 0.93254 0.93001 0.7919 0.89121 1.0 0.95064

About

two layer and three layer perceptron with back-prop


Languages

Language:Python 100.0%