A utility library for working with JSON Table Schema in Python.
With v0.7 renewed API has been introduced in backward-compatibility manner. Documentation for deprecated API could be found here. Deprecated API will be removed with v1 release.
Table
to work with data tables described by JSON Table SchemaSchema
representing JSON Table SchemaField
representing JSON Table Schema fieldvalidate
to validate JSON Table Schemainfer
to infer JSON Table Schema from data- built-in command-line interface to validate and infer schemas
- storage/plugins system to connect tables to different storage backends like SQL Database
pip install jsontableschema
from jsontableschema import Table
# Create table
table = Table('path.csv', schema='schema.json')
# Print schema descriptor
print(table.schema.descriptor)
# Print cast rows in a dict form
for keyed_row in table.iter(keyed=True):
print(keyed_row)
Table represents data described by JSON Table Schema:
# pip install sqlalchemy jsontableschema-sql
import sqlalchemy as sa
from pprint import pprint
from jsontableschema import Table
# Data source
SOURCE = 'https://raw.githubusercontent.com/okfn/jsontableschema-py/master/data/data_infer.csv'
# Create SQL database
db = sa.create_engine('sqlite://')
# Data processor
def skip_under_30(erows):
for number, headers, row in erows:
krow = dict(zip(headers, row))
if krow['age'] >= 30:
yield (number, headers, row)
# Work with table
table = Table(SOURCE, post_cast=[skip_under_30])
table.schema.save('tmp/persons.json') # Save INFERRED schema
table.save('persons', backend='sql', engine=db) # Save data to SQL
table.save('tmp/persons.csv') # Save data to DRIVE
# Check the result
pprint(Table('persons', backend='sql', engine=db).read(keyed=True))
pprint(Table('tmp/persons.csv').read(keyed=True))
# Will print (twice)
# [{'age': 39, 'id': 1, 'name': 'Paul'},
# {'age': 36, 'id': 3, 'name': 'Jane'}]
A model of a schema with helpful methods for working with the schema and supported data. Schema instances can be initialized with a schema source as a filepath or url to a JSON file, or a Python dict. The schema is initially validated (see validate below), and will raise an exception if not a valid JSON Table Schema.
from jsontableschema import Schema
# Init schema
schema = Schema('path.json')
# Cast a row
schema.cast_row(['12345', 'a string', 'another field'])
Methods available to Schema
instances:
descriptor
- return schema descriptorfields
- an array of the schema's Field instancesheaders
- an array of the schema headersprimary_key
- the primary key field for the schema as an arrayforeignKey
- the foreign key property for the schema as an arrayget_field(name)
- return the field object for given namehas_field(name)
- return a bool if the field exists in the schemacast_row(row, no_fail_fast=False)
- return row cast against schemasave(target)
- save schema to filesystem
Where the option no_fail_fast
is given, it will collect all errors it encouters and an exceptions.MultipleInvalid will be raised (if there are errors).
from jsontableschemal import Field
# Init field
field = Field({'type': 'number'})
# Cast a value
field.cast_value('12345') # -> 12345
Data values can be cast to native Python objects with a Field instance. Type instances can be initialized with field descriptors. This allows formats and constraints to be defined.
Casting a value will check the value is of the expected type, is in the correct format, and complies with any constraints imposed by a schema. E.g. a date value (in ISO 8601 format) can be cast with a DateType instance. Values that can't be cast will raise an InvalidCastError
exception.
Casting a value that doesn't meet the constraints will raise a ConstraintError
exception.
Given a schema as JSON file, url to JSON file, or a Python dict, validate
returns True
for a valid JSON Table Schema, or raises an exception, SchemaValidationError
. It validates only schema, not data against schema!
import io
import json
from jsontableschema import validate
with io.open('schema_to_validate.json') as stream:
descriptor = json.load(stream)
try:
jsontableschema.validate(descriptor)
except jsontableschema.exceptions.SchemaValidationError as exception:
# handle error
It may be useful to report multiple errors when validating a schema. This can be done with no_fail_fast
flag set to True.
try:
jsontableschema.validate(descriptor, no_fail_fast=True)
except jsontableschema.exceptions.MultipleInvalid as exception:
for error in exception.errors:
# handle error
Given headers and data, infer
will return a JSON Table Schema as a Python dict based on the data values. Given the data file, data_to_infer.csv:
id,age,name
1,39,Paul
2,23,Jimmy
3,36,Jane
4,28,Judy
Call infer
with headers and values from the datafile:
import io
import csv
from jsontableschema import infer
filepath = 'data_to_infer.csv'
with io.open(filepath) as stream:
headers = stream.readline().rstrip('\n').split(',')
values = csv.reader(stream)
schema = infer(headers, values)
schema
is now a schema dict:
{u'fields': [
{
u'description': u'',
u'format': u'default',
u'name': u'id',
u'title': u'',
u'type': u'integer'
},
{
u'description': u'',
u'format': u'default',
u'name': u'age',
u'title': u'',
u'type': u'integer'
},
{
u'description': u'',
u'format': u'default',
u'name': u'name',
u'title': u'',
u'type': u'string'
}]
}
The number of rows used by infer
can be limited with the row_limit
argument.
It's a provisional API excluded from SemVer. If you use it as a part of other program please pin concrete
goodtables
version to your requirements file.
JSON Table Schema features a CLI called jsontableschema
. This CLI exposes the infer
and validate
functions for command line use.
Example of validate
usage:
$ jsontableschema validate path/to-schema.json
Example of infer
usage:
$ jsontableschema infer path/to/data.csv
The response is a schema as JSON. The optional argument --encoding
allows a character encoding to be specified for the data file. The default is utf-8.
The library includes interface declaration to implement tabular Storage
:
An implementor should follow jsontableschema.Storage
interface to write his
own storage backend. This backend could be used with Table
class. See plugins
system below to know how to integrate custom storage plugin.
JSON Table Schema has a plugin system. Any package with the name like jsontableschema_<name>
could be imported as:
from jsontableschema.plugins import <name>
If a plugin is not installed ImportError
will be raised with a message describing how to install the plugin.
A list of officially supported plugins:
- BigQuery Storage - https://github.com/frictionlessdata/jsontableschema-bigquery-py
- Pandas Storage - https://github.com/frictionlessdata/jsontableschema-pandas-py
- SQL Storage - https://github.com/frictionlessdata/jsontableschema-sql-py
Table(source, schema=None, post_cast=None, backend=None, **options)
stream -> tabulator.Stream
schema -> Schema
name -> str
iter(keyed/extended=False) -> (generator) (keyed/extended)row[]
read(keyed/extended=False, limit=None) -> (keyed/extended)row[]
save(target, backend=None, **options)
Schema(descriptor)
descriptor -> dict
fields -> Field[]
headers -> str[]
primary_key -> str[]
foreign_keys -> str[]
get_field(name) -> Field
has_field(name) -> bool
cast_row(row, no_fail_fast=False) -> row
save(target)
Field(descriptor)
descriptor -> dict
name -> str
type -> str
format -> str
constraints -> dict
cast_value(value, skip_constraints=False) -> value
test_value(value, skip_constraints=False, constraint=None) -> bool
validate(descriptor, no_fail_fast=False) -> bool
infer(headers, values) -> descriptor
exceptions
~cli
---
Storage(**options)
buckets -> str[]
create(bucket, descriptor, force=False)
delete(bucket=None, ignore=False)
describe(bucket, descriptor=None) -> descriptor
iter(bucket) -> (generator) row[]
read(bucket) -> row[]
write(bucket, rows)
plugins
Please read the contribution guideline:
Thanks!