This is the official pytorch implementation of Regulating Intermediate 3D Features for Vision-Centric Autonomous Driving, In AAAI'24, Junkai Xu, Liang Peng, Haoran Cheng, Linxuan Xia, Qi Zhou, Dan Deng, Wei Qian, Wenxiao Wang and Deng Cai.
- [2023-12-20] Paper is released on arxiv!
- [2023-12-19] Code is released.
- [2023-12-14] Demo release.
- [2023-12-9] Vampire is accepted at AAAI 2024!! Code is comming soon.
Step 0. Install pytorch (v1.9.0).
conda create --name vampire python=3.7 -y
conda activate vampire
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html
Step 1. Install mmdet (2.26.0), mmsegmentation (0.29.1)MMDetection3D (v1.0.0rc6).
pip install openmim==0.3.3
mim install mmcv-full==1.6.2
mim install mmdet==2.26.0
mim install mmsegmentation==0.29.1
git clone https://github.com/open-mmlab/mmdetection3d.git --branch v1.0.0rc6 --single-branch
cd mmdetection3d
pip install -e .
cd ..
Step 2. Install requirements.
pip install -r requirements.txt
python setup.py develop
Step 0. Download nuScenes official dataset and occupancy trainval subset (including gts.tar.gz
and annotations.json
)
Step 1. Unzip all data in your disk and Symlink the dataset root to ./data/
.
ln -s [nuscenes root] ./data/
The directory will be as follows.
Vampire/
├── data/
│ ├── nuScenes/
│ │ ├── maps/
│ │ ├── samples/
│ │ ├── sweeps/
| | ├── lidarseg/
| | ├── panoptic/
│ │ ├── v1.0-test/
| | ├── v1.0-trainval/
| | ├── gts/
| | ├── annotations.json
Step 2. Prepare infos.
python scripts/gen_info.py
Train on 8 NVIDIA GPUs with a total batch size of 8.
python [EXP_PATH] --amp_backend native -b 8 --gpus 8
Validation & Test (output submit file for nuscenes toolkit evaluation)
python [EXP_PATH] --ckpt_path [CKPT_PATH] -v -b 8 --gpus 8
python [EXP_PATH] --ckpt_path [CKPT_PATH] -t -b 8 --gpus 8
Exp | Occ. | Seg. | Det. | weights |
---|---|---|---|---|
Vampire | 25.8 | 62.6 | 0.318 | Google-drive |
If you use Vampire in your research, please cite our work by using the following BibTeX entry:
@article{xu2023regulating,
title={Regulating Intermediate 3D Features for Vision-Centric Autonomous Driving},
author={Xu, Junkai and Peng, Liang and Cheng, Haoran and Xia, Linxuan and Zhou, Qi and Deng, Dan and Qian, Wei and Wang, Wenxiao and Cai, Deng},
journal={arXiv preprint arXiv:2312.11837},
year={2023},
}
This project benefits from the following codebases. Thanks for their great works!