Xu Jun (csjunxu)

csjunxu

User data from Github https://github.com/csjunxu

Company:NKU

Location:Tianjin, China

Home Page:https://csjunxu.github.io/

GitHub:@csjunxu

Xu Jun's repositories

Open-Image-Enhancement

Image Enhancement Techniques for low-light/non-uniform illuminance images

Language:MATLABLicense:MITStargazers:5Issues:3Issues:0

illuminant_estimation

Deep Specialized Network for Illuminant Estimation

Language:PythonStargazers:2Issues:2Issues:0

awesome-zero-shot-learning

A curated list of papers, code and resources pertaining to zero shot learning

pytorch-book

PyTorch tutorials and fun projects including neural talk, neural style, poem writing, anime generation

Language:Jupyter NotebookLicense:MITStargazers:1Issues:3Issues:0

amc-compressed-models

[ECCV 2018] Compressed models from AMC: AutoML for Model Compression and Acceleration on Mobile Devices.

Language:PythonLicense:Apache-2.0Stargazers:0Issues:1Issues:0

awesome-meta-learning

A curated list of Meta-Learning resources/papers.

Stargazers:0Issues:3Issues:0

Benchmark_EPS

A Benchmark for Edge-Preserving Image Smoothing.

Language:PythonStargazers:0Issues:3Issues:0

benchmark_results

visual tracker benchmark results

Stargazers:0Issues:4Issues:0

burst-cvpr-2019

Iterative Residual CNNs for Burst Photography Applications

Language:Jupyter NotebookStargazers:0Issues:3Issues:0

Deep-Compression-AlexNet

Deep Compression on AlexNet

Language:PythonLicense:BSD-2-ClauseStargazers:0Issues:3Issues:0

deep-high-resolution-net.pytorch

The project is an official implement of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Language:CudaLicense:MITStargazers:0Issues:4Issues:0

DnCNN

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising (TIP, 2017)

Language:MATLABStargazers:0Issues:2Issues:0

DNI

CVPR19 - Deep Network Interpolation for Continuous Imagery Effect Transition

Stargazers:0Issues:0Issues:0

examples

A set of examples around pytorch in Vision, Text, Reinforcement Learning, etc.

Language:PythonLicense:BSD-3-ClauseStargazers:0Issues:2Issues:0

FALSR

Fast, Accurate and Lightweight Super-Resolution models

Language:PythonStargazers:0Issues:2Issues:0

fritz-style-transfer

Train and deploy real-time artistic style transfer in mobile apps with Fritz Style Transfer.

Language:PythonStargazers:0Issues:3Issues:0

maml

Code for "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks"

Language:PythonLicense:MITStargazers:0Issues:3Issues:0

Markdown

Markdown 基本语法。

License:MITStargazers:0Issues:3Issues:0

maskfusion

MaskFusion: Real-Time Recognition, Tracking and Reconstruction of Multiple Moving Objects

Language:C++License:NOASSERTIONStargazers:0Issues:4Issues:0

ML_GCN

PyTorch implementation of Multi-Label Image Recognition with Graph Convolutional Networks, CVPR 2019.

Language:PythonStargazers:0Issues:0Issues:0

Person_reID_baseline_pytorch

A tiny, friendly, strong pytorch implement of person re-identification baseline. Tutorial 👉https://github.com/layumi/Person_reID_baseline_pytorch/tree/master/tutorial

Language:PythonLicense:MITStargazers:0Issues:4Issues:0

pytorch-tutorial

PyTorch Tutorial for Deep Learning Researchers

Language:PythonLicense:MITStargazers:0Issues:3Issues:0

RandWireNN

Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"

Language:PythonStargazers:0Issues:0Issues:0

Reinforcement-learning-with-tensorflow

Simple Reinforcement learning tutorials

Language:PythonLicense:MITStargazers:0Issues:3Issues:0

SAE

Semantic Autoencoder for Zero-shot Learning (Spotlight), CVPR 2017

Language:MATLABStargazers:0Issues:2Issues:0

SCIELAB-1996

Initial S-CIELAB Implementation (Zhang and Wandell)

Language:MATLABStargazers:0Issues:2Issues:0

Single-Image-Deraining

Single Image Deraining: A Comprehensive Benchmark Analysis

Stargazers:0Issues:3Issues:0

texture-vs-shape

Pre-trained models, data, code & materials from the paper "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness" (ICLR 2019 Oral)

Language:RStargazers:0Issues:2Issues:0

triplet-reid

Code for reproducing the results of our "In Defense of the Triplet Loss for Person Re-Identification" paper.

Language:PythonLicense:MITStargazers:0Issues:4Issues:0

Variational-Autoencoder-with-Arbitrary-Conditioning

PyTorch implementation (unofficial) of the ICLR 2019 paper 'Variational Autoencoder with Arbitrary Conditioning'

Language:PythonStargazers:0Issues:2Issues:0