SQL as Clojure data structures. Build queries programmatically -- even at runtime -- without having to bash strings together.
The latest versions on Clojars and on cljdoc:
This project follows the version scheme MAJOR.MINOR.COMMITS where MAJOR and MINOR provide some relative indication of the size of the change, but do not follow semantic versioning. In general, all changes endeavor to be non-breaking (by moving to new names rather than by breaking existing names). COMMITS is an ever-increasing counter of commits since the beginning of this repository.
All sample code in this README is automatically run as a unit test using seancorfield/readme.
Note that while some of these samples show pretty-printed SQL, this is just for
README readability; honeysql does not generate pretty-printed SQL.
The #sql/regularize
directive tells the test-runner to ignore the extraneous
whitespace.
(require '[honeysql.core :as sql]
'[honeysql.helpers :refer :all :as helpers])
Everything is built on top of maps representing SQL queries:
(def sqlmap {:select [:a :b :c]
:from [:foo]
:where [:= :f.a "baz"]})
Column names can be provided as keywords or symbols (but not strings -- HoneySQL treats strings as values that should be lifted out of the SQL as parameters).
format
turns maps into next.jdbc
-compatible (and clojure.java.jdbc
-compatible), parameterized SQL:
(sql/format sqlmap)
=> ["SELECT a, b, c FROM foo WHERE f.a = ?" "baz"]
By default, namespace-qualified keywords are treated as simple keywords: their namespace portion is ignored. This was the behavior in HoneySQL prior to the 0.9.0 release and has been restored since the 0.9.7 release as this is considered the least surprising behavior.
As of version 0.9.7, format
accepts :allow-namespaced-names? true
to provide the somewhat unusual behavior of 0.9.0-0.9.6, namely that namespace-qualified keywords were passed through into the SQL "as-is", i.e., with the /
in them (which generally required a quoting strategy as well).
As of version 0.9.8, format
accepts :namespace-as-table? true
to treat namespace-qualified keywords as if the /
were .
, allowing :table/column
as an alternative to :table.column
. This approach is likely to be more compatible with code that uses libraries like next.jdbc
and seql
, as well as being more convenient in a world of namespace-qualified keywords, following the example of clojure.spec
etc.
(def q-sqlmap {:select [:foo/a :foo/b :foo/c]
:from [:foo]
:where [:= :foo/a "baz"]})
(sql/format q-sqlmap :namespace-as-table? true)
=> ["SELECT foo.a, foo.b, foo.c FROM foo WHERE foo.a = ?" "baz"]
Honeysql is a relatively "pure" library, it does not manage your sql connection or run queries for you, it simply generates SQL strings. You can then pass them to jdbc:
(jdbc/query conn (sql/format sqlmap))
If you want to format the query as a string with no parameters (e.g. to use the SQL statement in a SQL console), pass :parameterizer :none
to the sql/format
:
(sql/format sqlmap :parameterizer :none)
=> ["SELECT a, b, c FROM foo WHERE f.a = baz"]
Note that HoneySQL 1.0 does not correctly turn string parameters into inline SQL strings -- it will only work with numbers (and Booleans). HoneySQL 2.0 will do this correctly (via the new :inline
option to sql/format
You can build up SQL maps yourself or use helper functions. build
is the Swiss Army Knife helper. It lets you leave out brackets here and there:
(sql/build :select :*
:from :foo
:where [:= :f.a "baz"])
=> {:where [:= :f.a "baz"], :from [:foo], :select [:*]}
You can provide a "base" map as the first argument to build:
(sql/build sqlmap :offset 10 :limit 10)
=> {:limit 10
:offset 10
:select [:a :b :c]
:where [:= :f.a "baz"]
:from [:foo]}
There are also functions for each clause type in the honeysql.helpers
namespace:
(-> (select :a :b :c)
(from :foo)
(where [:= :f.a "baz"]))
Order doesn't matter:
(= (-> (select :*) (from :foo))
(-> (from :foo) (select :*)))
=> true
When using the vanilla helper functions, new clauses will replace old clauses:
(-> sqlmap (select :*))
=> '{:from [:foo], :where [:= :f.a "baz"], :select (:*)}
To add to clauses instead of replacing them, use merge-select
, merge-where
, etc.:
(-> sqlmap
(merge-select :d :e)
(merge-where [:> :b 10])
sql/format)
=> ["SELECT a, b, c, d, e FROM foo WHERE (f.a = ? AND b > ?)" "baz" 10]
where
will combine multiple clauses together using SQL's AND
:
(-> (select :*)
(from :foo)
(where [:= :a 1] [:< :b 100])
sql/format)
=> ["SELECT * FROM foo WHERE (a = ? AND b < ?)" 1 100]
Column and table names may be aliased by using a vector pair of the original name and the desired alias:
(-> (select :a [:b :bar] :c [:d :x])
(from [:foo :quux])
(where [:= :quux.a 1] [:< :bar 100])
sql/format)
=> ["SELECT a, b AS bar, c, d AS x FROM foo quux WHERE (quux.a = ? AND bar < ?)" 1 100]
In particular, note that (select [:a :b])
means SELECT a AS b
rather than
SELECT a, b
-- select
is variadic and does not take a collection of column names.
Inserts are supported in two patterns. In the first pattern, you must explicitly specify the columns to insert, then provide a collection of rows, each a collection of column values:
(-> (insert-into :properties)
(columns :name :surname :age)
(values
[["Jon" "Smith" 34]
["Andrew" "Cooper" 12]
["Jane" "Daniels" 56]])
sql/format)
=> [#sql/regularize
"INSERT INTO properties (name, surname, age)
VALUES (?, ?, ?), (?, ?, ?), (?, ?, ?)"
"Jon" "Smith" 34 "Andrew" "Cooper" 12 "Jane" "Daniels" 56]
Alternately, you can simply specify the values as maps; the first map defines the columns to insert, and the remaining maps must have the same set of keys and values:
(-> (insert-into :properties)
(values [{:name "John" :surname "Smith" :age 34}
{:name "Andrew" :surname "Cooper" :age 12}
{:name "Jane" :surname "Daniels" :age 56}])
sql/format)
=> [#sql/regularize
"INSERT INTO properties (name, surname, age)
VALUES (?, ?, ?), (?, ?, ?), (?, ?, ?)"
"John" "Smith" 34
"Andrew" "Cooper" 12
"Jane" "Daniels" 56]
The column values do not have to be literals, they can be nested queries:
(let [user-id 12345
role-name "user"]
(-> (insert-into :user_profile_to_role)
(values [{:user_profile_id user-id
:role_id (-> (select :id)
(from :role)
(where [:= :name role-name]))}])
sql/format))
=> [#sql/regularize
"INSERT INTO user_profile_to_role (user_profile_id, role_id)
VALUES (?, (SELECT id FROM role WHERE name = ?))"
12345
"user"]
(-> (select :*)
(from :foo)
(where [:in :foo.a (-> (select :a) (from :bar))])
sql/format)
=> ["SELECT * FROM foo WHERE (foo.a in (SELECT a FROM bar))"]
Composite types are supported:
(-> (insert-into :comp_table)
(columns :name :comp_column)
(values
[["small" (composite 1 "inch")]
["large" (composite 10 "feet")]])
sql/format)
=> [#sql/regularize
"INSERT INTO comp_table (name, comp_column)
VALUES (?, (?, ?)), (?, (?, ?))"
"small" 1 "inch" "large" 10 "feet"]
Updates are possible too (note the double S in sset
to avoid clashing
with clojure.core/set
):
(-> (helpers/update :films)
(sset {:kind "dramatic"
:watched (sql/call :+ :watched 1)})
(where [:= :kind "drama"])
sql/format)
=> [#sql/regularize
"UPDATE films SET kind = ?, watched = (watched + ?)
WHERE kind = ?"
"dramatic"
1
"drama"]
If you are trying to build a compound update statement (with from
or join
),
be aware that different databases have slightly different syntax in terms of
where SET
should appear. The default above is to put SET
after any JOIN
.
There are two variants of sset
(and the underlying :set
in the SQL map):
set0
(and:set0
) -- this puts theSET
beforeFROM
,set1
(and:set1
) -- a synonym forsset
(and:set
) that puts theSET
afterJOIN
.
Deletes look as you would expect:
(-> (delete-from :films)
(where [:<> :kind "musical"])
sql/format)
=> ["DELETE FROM films WHERE kind <> ?" "musical"]
If your database supports it, you can also delete from multiple tables:
(-> (delete [:films :directors])
(from :films)
(join :directors [:= :films.director_id :directors.id])
(where [:<> :kind "musical"])
sql/format)
=> [#sql/regularize
"DELETE films, directors
FROM films
INNER JOIN directors ON films.director_id = directors.id
WHERE kind <> ?"
"musical"]
If you want to delete everything from a table, you can use truncate
:
(-> (truncate :films)
sql/format)
=> ["TRUNCATE films"]
Queries may be combined within a :union, :union-all, :intersect or :except keyword:
(sql/format {:union [(-> (select :*) (from :foo))
(-> (select :*) (from :bar))]})
=> ["SELECT * FROM foo UNION SELECT * FROM bar"]
Keywords that begin with %
are interpreted as SQL function calls:
(-> (select :%count.*) (from :foo) sql/format)
=> ["SELECT count(*) FROM foo"]
(-> (select :%max.id) (from :foo) sql/format)
=> ["SELECT max(id) FROM foo"]
Keywords that begin with ?
are interpreted as bindable parameters:
(-> (select :id)
(from :foo)
(where [:= :a :?baz])
(sql/format :params {:baz "BAZ"}))
=> ["SELECT id FROM foo WHERE a = ?" "BAZ"]
There are helper functions and data literals for SQL function calls, field qualifiers, raw SQL fragments, inline values, and named input parameters:
(def call-qualify-map
(-> (select (sql/call :foo :bar) (sql/qualify :foo :a) (sql/raw "@var := foo.bar"))
(from :foo)
(where [:= :a (sql/param :baz)] [:= :b (sql/inline 42)])))
call-qualify-map
=> '{:where [:and [:= :a #sql/param :baz] [:= :b #sql/inline 42]]
:from (:foo)
:select (#sql/call [:foo :bar] :foo.a #sql/raw "@var := foo.bar")}
(sql/format call-qualify-map :params {:baz "BAZ"})
=> ["SELECT foo(bar), foo.a, @var := foo.bar FROM foo WHERE (a = ? AND b = 42)" "BAZ"]
A common example in the wild is the PostGIS extension to PostgreSQL where you have a lot of function calls needed in code:
(-> (insert-into :sample)
(values [{:location (sql/call :ST_SetSRID
(sql/call :ST_MakePoint 0.291 32.621)
(sql/call :cast 4326 :integer))}])
(sql/format))
=> [#sql/regularize
"INSERT INTO sample (location)
VALUES (ST_SetSRID(ST_MakePoint(?, ?), CAST(? AS integer)))"
0.291 32.621 4326]
Raw SQL fragments that are strings are treated exactly as-is when rendered into the formatted SQL string (with no parsing or parameterization). Inline values will not be lifted out as parameters, so they end up in the SQL string as-is.
Raw SQL can also be supplied as a vector of strings and values. Strings are
rendered as-is into the formatted SQL string. Non-strings are lifted as
parameters. If you need a string parameter lifted, you must use #sql/param
or the param
helper.
(-> (select :*)
(from :foo)
(where [:< :expired_at (sql/raw ["now() - '" 5 " seconds'"])])
(sql/format {:foo 5}))
=> ["SELECT * FROM foo WHERE expired_at < now() - '? seconds'" 5]
(-> (select :*)
(from :foo)
(where [:< :expired_at (sql/raw ["now() - '" #sql/param :t " seconds'"])])
(sql/format {:t 5}))
=> ["SELECT * FROM foo WHERE expired_at < now() - '? seconds'" 5]
To quote identifiers, pass the :quoting
keyword option to format
. Valid options are :ansi
(PostgreSQL), :mysql
, or :sqlserver
:
(-> (select :foo.a)
(from :foo)
(where [:= :foo.a "baz"])
(sql/format :quoting :mysql))
=> ["SELECT `foo`.`a` FROM `foo` WHERE `foo`.`a` = ?" "baz"]
To issue a locking select, add a :lock
to the query or use the lock helper. The lock value must be a map with a :mode
value. The built-in
modes are the standard :update
(FOR UPDATE) or the vendor-specific :mysql-share
(LOCK IN SHARE MODE) or :postresql-share
(FOR SHARE). The
lock map may also provide a :wait
value, which if false will append the NOWAIT parameter, supported by PostgreSQL.
(-> (select :foo.a)
(from :foo)
(where [:= :foo.a "baz"])
(lock :mode :update)
(sql/format))
=> ["SELECT foo.a FROM foo WHERE foo.a = ? FOR UPDATE" "baz"]
To support novel lock modes, implement the format-lock-clause
multimethod.
To be able to use dashes in quoted names, you can pass :allow-dashed-names true
as an argument to the format
function.
(sql/format
{:select [:f.foo-id :f.foo-name]
:from [[:foo-bar :f]]
:where [:= :f.foo-id 12345]}
:allow-dashed-names? true
:quoting :ansi)
=> ["SELECT \"f\".\"foo-id\", \"f\".\"foo-name\" FROM \"foo-bar\" \"f\" WHERE \"f\".\"foo-id\" = ?" 12345]
Here's a big, complicated query. Note that Honey SQL makes no attempt to verify that your queries make any sense. It merely renders surface syntax.
(def big-complicated-map
(-> (select :f.* :b.baz :c.quux [:b.bla "bla-bla"]
(sql/call :now) (sql/raw "@x := 10"))
(modifiers :distinct)
(from [:foo :f] [:baz :b])
(join :draq [:= :f.b :draq.x])
(left-join [:clod :c] [:= :f.a :c.d])
(right-join :bock [:= :bock.z :c.e])
(where [:or
[:and [:= :f.a "bort"] [:not= :b.baz (sql/param :param1)]]
[:< 1 2 3]
[:in :f.e [1 (sql/param :param2) 3]]
[:between :f.e 10 20]])
(group :f.a :c.e)
(having [:< 0 :f.e])
(order-by [:b.baz :desc] :c.quux [:f.a :nulls-first])
(limit 50)
(offset 10)))
big-complicated-map
=> {:select [:f.* :b.baz :c.quux [:b.bla "bla-bla"]
(sql/call :now) (sql/raw "@x := 10")]
:modifiers [:distinct]
:from [[:foo :f] [:baz :b]]
:join [:draq [:= :f.b :draq.x]]
:left-join [[:clod :c] [:= :f.a :c.d]]
:right-join [:bock [:= :bock.z :c.e]]
:where [:or
[:and [:= :f.a "bort"] [:not= :b.baz (sql/param :param1)]]
[:< 1 2 3]
[:in :f.e [1 (sql/param :param2) 3]]
[:between :f.e 10 20]]
:group-by [:f.a :c.e]
:having [:< 0 :f.e]
:order-by [[:b.baz :desc] :c.quux [:f.a :nulls-first]]
:limit 50
:offset 10}
(sql/format big-complicated-map {:param1 "gabba" :param2 2})
=> [#sql/regularize
"SELECT DISTINCT f.*, b.baz, c.quux, b.bla AS bla_bla, now(), @x := 10
FROM foo f, baz b
INNER JOIN draq ON f.b = draq.x
LEFT JOIN clod c ON f.a = c.d
RIGHT JOIN bock ON bock.z = c.e
WHERE ((f.a = ? AND b.baz <> ?)
OR (? < ? AND ? < ?)
OR (f.e in (?, ?, ?))
OR f.e BETWEEN ? AND ?)
GROUP BY f.a, c.e
HAVING ? < f.e
ORDER BY b.baz DESC, c.quux, f.a NULLS FIRST
LIMIT ?
OFFSET ? "
"bort" "gabba" 1 2 2 3 1 2 3 10 20 0 50 10]
;; Printable and readable
(= big-complicated-map (read-string (pr-str big-complicated-map)))
=> true
You can define your own function handlers for use in where
:
(require '[honeysql.format :as fmt])
(defmethod fmt/fn-handler "betwixt" [_ field lower upper]
(str (fmt/to-sql field) " BETWIXT "
(fmt/to-sql lower) " AND " (fmt/to-sql upper)))
(-> (select :a) (where [:betwixt :a 1 10]) sql/format)
=> ["SELECT a WHERE a BETWIXT ? AND ?" 1 10]
You can also define your own clauses:
;; Takes a MapEntry of the operator & clause data, plus the entire SQL map
(defmethod fmt/format-clause :foobar [[op v] sqlmap]
(str "FOOBAR " (fmt/to-sql v)))
(sql/format {:select [:a :b] :foobar :baz})
=> ["SELECT a, b FOOBAR baz"]
(require '[honeysql.helpers :refer [defhelper]])
;; Defines a helper function, and allows 'build' to recognize your clause
(defhelper foobar [m args]
(assoc m :foobar (first args)))
(-> (select :a :b) (foobar :baz) sql/format)
=> ["SELECT a, b FOOBAR baz"]
When adding a new clause, you may also need to register it with a specific priority so that it formats correctly, for example:
(fmt/register-clause! :foobar 110)
If you do implement a clause or function handler for an ANSI SQL, consider submitting a pull request so others can use it, too. For non-standard clauses and/or functions, look for a library that extends honeysql
for that specific database or create one, if no such library exists.
If you want to use your own datatype as a parameter then the idiomatic approach of implementing
next.jdbc
's SettableParameter
or clojure.java.jdbc
's ISQLValue
protocol isn't enough as honeysql
won't correct pass through your datatype, rather it will interpret it incorrectly.
To teach honeysql
how to handle your datatype you need to implement honeysql.format/ToSql
. For example:
;; given:
(defrecord MyDateWrapper [...]
(to-sql-timestamp [this]...)
)
;; executing:
(hsql/format {:where [:> :some_column (MyDateWrapper. ...)]})
;; results in => "where :some_column > ()"
;; we can teach honeysql about it:
(extend-protocol honeysql.format/ToSql
MyDateWrapper
(to-sql [v] (to-sql (date/to-sql-timestamp v))))
;; allowing us to now:
(hsql/format {:where [:> :some_column (MyDateWrapper. ...)]})
;; which correctly results in => "where :some_column>?" and the parameter correctly set
- Create table, etc.
Copyright © 2012-2017 Justin Kramer
Distributed under the Eclipse Public License, the same as Clojure.