cognix-dev / cognix

AI development assistant with persistent memory. Solves the problem of AI tools forgetting context across sessions.

Home Page:https://github.com/cognix-dev/cognix

Repository from Github https://github.comcognix-dev/cognixRepository from Github https://github.comcognix-dev/cognix

Cognix Logo

Cognix


πŸš€ v0.1.5 released!

Critical syntax error fix and improved startup reliability.

If you find Cognix useful, please give it a star ⭐ β€” it helps us reach more developers and build a stronger community.

β–ˆβ–€β–€ β–ˆβ–€β–ˆ β–ˆβ–€β–€ β–ˆβ–„β–‘β–ˆ β–ˆ β–€β–„β–€
β–ˆβ–„β–„ β–ˆβ–„β–ˆ β–ˆβ–„β–ˆ β–ˆβ–‘β–€β–ˆ β–ˆ β–ˆβ–‘β–ˆ

Cognix β€” Augmented AI Development Partner for CLI
Persistent Sessions, Long-Term Memory, Multi-Model Support, and Full-Pipeline Development.
Build smarter, faster, and without context loss.

Version License Python Demo

Quick Start β€’ Demo β€’ Features β€’ Commands


🎯 12-Second Magic

Cognix is the only AI coding Partner that:

  • πŸ’Ύ Session Restoration: Resume interrupted work completely
  • ⚑ Structured Workflow: Think β†’ Plan β†’ Write
  • 🎨 Practical Results: Generate beautiful GUI apps instantly
  • 🧠 Persistent Memory: Remember entire projects across sessions

"Once you have an idea, it's already complete."


🎬 See It In Action

cognix_demo_12sec_20250818.mp4

12-second demo: Session restoration β†’ /write β†’ Beautiful neon green clock app

Quick Demo (12 seconds)

# 0-1 seconds: Start Cognix
cognix

# 1-3 seconds: Session restoration
Would you like to restore the previous session? [y/N]: y
βœ… Session restored successfully!
πŸ“„ Workflow state restored!
   Goal: Brief: big bright green clock popup window bold digits
   Progress: βœ… Think β†’ βœ… Plan β†’ ⏳ Write

# 3-8 seconds: Code generation
cognix> /write --file clock.py
✨ Writing implementation for: Brief: big bright green clock popup window bold digits
   Target file: clock.py
   Target language: python (from .py)

# 8-10 seconds: Beautiful neon green clock appears
Save generated code to clock.py? [y/N] y
βœ… Code saved to: clock.py

What you just saw:

  1. πŸ’Ύ Workflow Restoration: AI remembers your thinking process across sessions
  2. ⚑ Instant Code Generation: From plan to working GUI in seconds
  3. 🎨 Beautiful Results: Functional neon green digital clock with #00FF00 perfection
  4. πŸš€ Complete Pipeline: Think β†’ Plan β†’ Write β†’ Deploy in one session

Try It Yourself

# Step 1: Start your thinking
cognix> /think "Brief: bright green digital clock GUI"

# Step 2: Plan implementation  
cognix> /plan

# Step 3: Generate code
cognix> /write --file my_clock.py

# Step 4: Exit and run
cognix> exit
python my_clock.py  # β†’ Beautiful clock appears!

πŸš€ Quick Start

Installation

Recommended (isolated):

pipx install cognix

Alternative:

pip install cognix

Setup (2 minutes)

# Option 1: Anthropic Claude (Recommended)
echo "ANTHROPIC_API_KEY=your_api_key_here" > .env
# Get your key at: https://console.anthropic.com/

# Option 2: OpenAI GPT
echo "OPENAI_API_KEY=your_api_key_here" > .env
# Get your key at: https://platform.openai.com/

# Option 3: OpenRouter (Multiple models with one key)
echo "OPENAI_API_KEY=sk-or-v1-your_openrouter_key" > .env
echo "OPENAI_BASE_URL=https://openrouter.ai/api/v1" >> .env
# Get your key at: https://openrouter.ai/keys
# Free models available: https://openrouter.ai/models/?q=free

# Start Cognix
cognix

Your First Workflow (30 seconds)

cognix> /think "Create a REST API for user authentication"
# πŸ€” AI analyzes your requirements...

cognix> /plan
# πŸ“‹ AI creates detailed implementation plan...

cognix> /write --file auth_api.py
# ✏️ AI generates production-ready code...

That's it! Your API is ready to use.


πŸ“‹ Commands

Core Workflow

Command Description Example
/think "<goal>" AI analyzes your problem /think "API rate limiting"
/plan Creates implementation strategy /plan
/write [--file path] Generates production code /write --file api.py

Help & Information

Command Description Example
/help Show all commands /help
/model Show current model & options /model
/workflow-status Check current progress /workflow-status
/status Show current config/model /status
/memory Inspect or export memory /memory export

AI Model Management

Command Description Example
/model <name> Switch AI models instantly /model gpt-4o

File Operations

Command Description Example
/edit <file> AI-assisted editing /edit src/main.py
/fix <file> Auto-fix bugs /fix api.py --function auth
/review [dir] Code analysis /review src/
/diff Show changes before applying /diff
/apply Apply generated patch safely /apply
/backup Manage backups/restore /backup restore

Session Management

Command Description Example
/save-session <name> Save your work /save-session "auth-system"
/resume <name> Resume previous work /resume "auth-system"
/list_sessions List saved sessions /list_sessions
/session_info Show current session meta /session_info
/save_session <name> Save current session /save_session mywork
/resume <name> Restore a saved session /resume mywork

Workflow Control

Command Description Example
/clear-workflow Start fresh /clear-workflow

🌟 Key Features

πŸ“„ Multi-AI Powerhouse

cognix> /think "Build a todo app"
# Using Claude-4: Detailed, enterprise-focused analysis

cognix> /model gpt-4o
βœ… Switched to: gpt-4o

cognix> /think "Build a todo app"  
# Using GPT-4o: Creative, modern, action-oriented approach

Compare results instantly. Choose the best AI for each task.

🧠 True Session Persistence

# Yesterday
cognix> /think "E-commerce platform architecture"
cognix> /plan
# Work interrupted...

# Today
cognix
πŸ“„ Workflow state restored!
Goal: E-commerce platform architecture  
Progress: βœ… Think β†’ βœ… Plan β†’ ⏳ Write

cognix> /write --file platform.py
# Continue exactly where you left off!

⚑ Lightning-Fast Development

# Generate production-ready GUI apps in seconds
cognix> /think "Brief: neon green clock GUI"
cognix> /plan  
cognix> /write --file clock.py
# β†’ Beautiful tkinter app with #00FF00 fluorescent green digits!

Perfect for rapid prototyping and instant visual results.

⚑ Intelligent Context Awareness

  • πŸ” Auto-scans your project structure
  • 🧠 Remembers all previous conversations
  • 🎯 Adapts suggestions to your codebase
  • πŸ“„ Maintains context across sessions

πŸ†• What's New in v0.1.5

  • Enhanced reference notation resilience for partial file failures
  • Improved error handling and user-friendly messages
  • Cross-model compatibility improvements (Claude Sonnet 4 & GPT-4o tested)
  • Optimized system prompt construction

πŸ’‘ Real Usage Examples

Scenario 1: Feature Development

cognix> /think "Add OAuth2 authentication to my Express.js API"

πŸ’­ Analysis Result:
**1) What needs to be built:** OAuth2 flow with JWT tokens, middleware for route protection, 
and integration with popular providers (Google, GitHub, etc.)
**2) Key challenges:** Token validation, refresh logic, and secure session management
**3) Success approach:** Use passport.js ecosystem, implement proper error handling, 
and add comprehensive testing for auth flows

cognix> /plan

πŸ“‹ Implementation Plan:
- Setup & core logic: Install passport, passport-jwt, configure strategies for Google/GitHub OAuth2...
- Security implementation: JWT signing/validation, refresh token rotation, rate limiting...
- Testing & deployment: Unit tests for auth middleware, integration tests for OAuth flows...

cognix> /write --file auth/oauth.js
# Generates complete OAuth2 implementation

Scenario 2: AI Model Comparison

# Claude-4 approach (detailed, enterprise-focused)
cognix> /think "Database caching strategy"
β†’ Comprehensive analysis with Redis, Memcached comparison, 
  enterprise concerns, compliance considerations

# Switch to GPT-4o for creative alternatives  
cognix> /model gpt-4o
cognix> /think "Database caching strategy"  
β†’ Modern approach with edge caching, CDN integration,
  serverless caching solutions

# Choose the best elements from both!

Scenario 3: Session Restoration

# After weekend break
cognix
πŸ“‹ Previous session found!
   Last updated: 2025-08-09T18:42:57
   Entries: 15
   Model: claude-sonnet-4-20250514

Would you like to restore the previous session? [y/N]: y
βœ… Session restored successfully!
πŸ“„ Workflow state restored!
   Goal: Microservices architecture design
   Progress: βœ… Think β†’ βœ… Plan β†’ ⏳ Write

# Continue immediately where you left off
cognix> /write --file services/user-service.py

Scenario 4: Rapid GUI Prototyping

# 12-second workflow for visual applications
cognix> /think "Brief: desktop calculator with dark theme"
cognix> /plan
cognix> /write --file calculator.py

# Result: Complete GUI calculator ready to use
python calculator.py  # β†’ Professional calculator app launches

🎯 Supported AI Models

Claude 4 Series (Anthropic)

  • claude-opus-4-20250514 - Most capable, complex reasoning
  • claude-sonnet-4-20250514 - Balanced performance & speed

GPT-4o Series (OpenAI)

  • gpt-4o - Latest model, highly creative
  • gpt-4o-mini - Fast responses, cost-effective

OpenRouter Models (Multiple providers)

  • google/gemini-2.0-flash-exp:free - Free Google Gemini
  • microsoft/phi-3-mini-128k-instruct:free - Free Microsoft Phi
  • Many more models available at https://openrouter.ai/models

Legacy Support

  • claude-3-5-sonnet-20241022
  • claude-3-7-sonnet-20250219

Switch between any model instantly: /model gpt-4o


βš™οΈ Configuration & Customization

Troubleshooting

API Key Configuration Issues

Problem: Provider anthropic not available or No LLM providers available

Solution: Cognix automatically detects available API providers. Configure at least one:

# Option 1: Environment variables
export OPENAI_API_KEY=your_key_here
export ANTHROPIC_API_KEY=your_key_here

# Option 2: .env file
echo "OPENAI_API_KEY=your_key_here" > .env
echo "ANTHROPIC_API_KEY=your_key_here" >> .env

OpenRouter Configuration

Using OpenRouter for multiple models:

OPENAI_API_KEY=sk-or-v1-your_openrouter_key
OPENAI_BASE_URL=https://openrouter.ai/api/v1

Common OpenRouter Issues:

Provider-Specific Setup

OpenAI Only:

OPENAI_API_KEY=sk-proj-your_key_here

β†’ Cognix automatically defaults to gpt-4o

Anthropic Only:

ANTHROPIC_API_KEY=sk-ant-your_key_here

β†’ Cognix automatically defaults to claude-sonnet-4-20250514

OpenRouter Only:

OPENAI_API_KEY=sk-or-v1-your_openrouter_key
OPENAI_BASE_URL=https://openrouter.ai/api/v1

β†’ Access to multiple models with single key

Manual Model Switching

cognix> /model gpt-4o          # Switch to OpenAI
cognix> /model claude-sonnet-4  # Switch to Claude
cognix> /model google/gemini-2.0-flash-exp:free  # Switch to OpenRouter
cognix> /model                  # Show all available models

Environment Detection Order

Cognix checks for API keys in this priority:

  1. Environment variables (OPENAI_API_KEY, ANTHROPIC_API_KEY)
  2. .env file in current directory
  3. .env file in ~/.cognix/ directory

Common Issues

  • No LLM providers available β†’ Set at least one API key
  • Model switching fails β†’ Use /model to see available options
  • Session restore errors β†’ Check ~/.cognix/sessions/ directory permissions

πŸ” Data Storage & Privacy

Cognix stores local data under your home directory:

  • ~/.cognix/config.json β€” user configuration
  • ~/.cognix/sessions/ β€” saved sessions & autosave
  • ~/.cognix/memory/memory.json β€” long‑term memory

All files are local to your machine. You can delete them anytime.

Default Config (~/.cognix/config.json)

{
  "model": "claude-sonnet-4-20250514",
  "temperature": 0.7,
  "max_tokens": 4000,
  "auto_backup": true,
  "stream_responses": true,
  "typewriter_effect": false
}

Environment Variables

# API Keys (Required)
ANTHROPIC_API_KEY=your_anthropic_key
OPENAI_API_KEY=your_openai_key

# OpenRouter (Alternative)
OPENAI_API_KEY=sk-or-v1-your_openrouter_key
OPENAI_BASE_URL=https://openrouter.ai/api/v1

# Optional settings  
COGNIX_DEBUG=true
DEFAULT_MODEL=gpt-4o
COGNIX_AUTO_SAVE=true

System Requirements

  • Python: 3.8 or higher
  • OS: Windows 10+, macOS 10.15+, Linux
  • Memory: 512MB minimum recommended
  • Internet: Required for API connections

πŸ† Why Choose Cognix?

vs. GitHub Copilot

Feature Cognix Copilot
Multi-AI Support βœ… GPT-4o + Claude-4 + OpenRouter ❌ OpenAI only
Session Persistence βœ… Full project memory ❌ No memory
Workflow Structure βœ… Thinkβ†’Planβ†’Write ❌ Code completion only
CLI Integration βœ… Native terminal ❌ Editor-dependent

vs. ChatGPT/Claude Web

Feature Cognix Web Interfaces
Development Integration βœ… Direct file operations ❌ Copy-paste workflow
Project Context βœ… Full codebase awareness ❌ Limited context
AI Model Switching βœ… Instant switching ❌ Separate applications
Session Management βœ… Auto-save everything ❌ Manual management

vs. Other AI Coding Tools

  • 🧠 Memory Persistence: Only Cognix remembers everything across sessions
  • πŸ“„ Multi-AI: Compare approaches from different models instantly
  • ⚑ Structured Workflow: Thinkβ†’Planβ†’Write methodology
  • 🎯 State Restoration: Resume work exactly where you left off

πŸš€ Project-Specific Examples

Web Development

cognix> /think "Full-stack blog platform with Next.js"
cognix> /plan
cognix> /write --file blog-platform.js

Data Science

cognix> /think "Analyze customer churn with machine learning"
cognix> /plan  
cognix> /write --file churn_analysis.py

DevOps

cognix> /think "Docker containerization for my Python app"
cognix> /plan
cognix> /write --file Dockerfile

Mobile Development

cognix> /think "React Native app with offline sync"
cognix> /plan
cognix> /write --file OfflineSync.js

πŸ› οΈ Advanced Features

Constraint Detection

cognix> /think "Todo app - brief"
🎯 Detected constraints: brief format
πŸ’­ Analysis Result:
**1) What needs to be built:** Basic CRUD operations...
**2) Key challenges:** Data persistence and user experience...  
**3) Success approach:** Start with MVP featuring essential functions...

Intelligent File Operations

# Edit with AI assistance
cognix> /edit src/api.py
πŸ” Editing: src/api.py
What changes would you like to make? Add rate limiting

πŸ€– Generating suggestions...
πŸ’‘ Suggestion: I'll add Express rate limiting middleware...

# Auto-fix specific functions
cognix> /fix utils.py --function calculate_total
πŸ”§ Analyzing function: calculate_total
βœ… Fixed: Added null checking and proper error handling

Project-Aware Conversations

cognix> How can I improve the performance of my React components?

# AI automatically analyzes your React project structure
🧠 Analyzing your React project...
πŸ” Found: 15 components, 3 hooks, 2 contexts

πŸ’‘ Specific recommendations for your codebase:
1. UserProfile.jsx: Consider React.memo for expensive renders
2. DataTable.jsx: Implement virtualization for large datasets  
3. Global state: Your Redux store could benefit from RTK Query

🀝 Contributing

We welcome contributions! Here's how to get started:

Development Setup

git clone https://github.com/cognix-dev/cognix.git
cd cognix
pip install -e ".[dev]"

Running Tests

pytest tests/

Code Style

black cognix/
flake8 cognix/

Contribution Guidelines


🧰 Troubleshooting

  • No LLM providers available β†’ Set ANTHROPIC_API_KEY or OPENAI_API_KEY in your .env, then restart Cognix.
  • Patch apply failed β†’ Restore the last backup with /backup restore.

πŸ“„ License

MIT License - see LICENSE file for details.


🌟 Roadmap

v0.2.0 - Memory Management & Code Enhancement

  • πŸ” Individual memory entry deletion
  • πŸ—‚οΈ Automatic memory archiving
  • πŸ“Š Memory size management and cleanup
  • 🎨 AI code enhancement (/refactor, /lint)
  • ⚑ Improved streaming output

v0.3.0 - Advanced Development Features

  • 🎯 Target file/function specification (@filename, #function)
  • πŸƒ File execution capabilities (/run)
  • πŸ“± Browser-based GUI (beta)
  • πŸ” Advanced code analysis features

v0.4.0 - Team Collaboration

  • πŸ‘₯ Shared sessions between team members
  • πŸ“‹ Code review workflows
  • πŸ”— Basic GitHub/GitLab integration

v0.5.0 - Enterprise

  • 🏒 Self-hosted deployment options
  • πŸ” Advanced security features
  • πŸ“Š Usage analytics and metrics

πŸ’¬ Support

Need Help?

Stay Updated


🧠 Cognix - Where AI meets intelligent development workflows

Made with ❀️ by Individual Developer

⭐ Star on GitHub β€’ πŸš€ Get Started


About

AI development assistant with persistent memory. Solves the problem of AI tools forgetting context across sessions.

https://github.com/cognix-dev/cognix

License:MIT License


Languages

Language:Python 100.0%