chenkq7 / roben

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Code for the following paper:

Robust Encodings: A Framework for Combating Adversarial Typos

Erik Jones, Robin Jia, Aditi Raghunathan, and Percy Liang

Association for Computational Linguistics (ACL), 2020

Cluster Embeddings

We will run experiments for six tasks: RTE, MRPC, SST-2, QNLI, MNLI, QQP. These are used as arguments whenever task name (or mrpc in the following code, which is used as an example) comes up. Data is available on codalab.

Standard training

The core element of our defense is a "clusterer" object, which we use to map tokens to a series of representatives, before inputting into a normal model. To create a clusterer, we use two different data sources:

  • Embeddings used to filter vocab words: data/glove/glove.6b.50d.txt
  • Word frequencies: data/COCA/coca-1grams.json Given these files, to make a clusterer, run: python construct_clusters.py --vocab_size 100000 --perturb_type ed1 This will form a clusterer object with path clusterers/vocab100000_ed1.pkl, which will be used in future experiments.

Now, lots of the following code is adapted from an older version of https://github.com/huggingface/transformers. Data can be found there. We will first fine-tune and save uncased BERT on the MRPC task. To do so, we set the following variables:

export TASK_NAME=MRPC
export CLUSTERER_PATH=clusterers/vocab100000_ed1.pkl
export GLUE_DIR=data/glue_data

Where the data from MRPC is stored in glue_data With these variables set, we run:

python run_glue.py --task_name $TASK_NAME --do_lower_case --do_train --do_eval --data_dir $GLUE_DIR/$TASK_NAME --output_dir model_output/$TASK_NAME --overwrite_output_dir --seed_output_dir --save_results --save_dir codalab --recoverer identity --augmentor identity --run_test

This gives us a normally trained model, which will get saved at model_output/MRPC_XXXXXX where XXXXXX is a random six digit number (this is the --seed_output_dir argument. Information (including clean accuracy which we report, and future attack statistics) will be stored in results/codalab/MRPC_XXXXXX.json. To attack this model, we run:

python run_glue.py --task_name $TASK_NAME --do_lower_case --do_eval --data_dir $GLUE_DIR/$TASK_NAME --output_dir model_output/$TASK_NAME_XXXXXX  --save_results --save_dir codalab --recoverer identity --augmentor identity --run_test --model_name_or_path model_output/MRPC_XXXXXX --attack --new_attack --attacker beam-search --beam_width 5 --attack_name LongDeleteShortAll --attack_type ed1

There are a lot of arguments here. attack means an adversary is searching for a typo, and new_attack says to avoid a cache. attacker determines the style of heuristic attack, and attack_name gives the type of token-level peturbation space used for the attack. This is all the information we need for the identity.

Data Augmentation

To run this experiment with data augmentation, repeat both runs of python run_glue.py, but with the flag --augmentor k-aug.

Typo Corrector

We'll now replicate the entire typo corrector training process, utilizing the new environment variable:

$TC_DIR=$HOME/tc_data

This will have to be made if it does not exist, but it will store preprocessed data, vocabularies, and models. First, we run:

preprocess_tc.py --glue_dir $GLUE_DIR --save_dir $TC_DIR/glue_tc_preprocessed

This converts convert the data in $GLUE_DIR into the correct format to train the typo corrector. This saves in $TC_DIR/glue_tc_preprocessed. Next, cd to scRNN, and run:

python train.py --task_name mrpc --preprocessed_glue_dir $TC_DIR/glue_tc_preprocessed --tc_dir $TC_DIR

This trains a typo-corrector based on random perturbations to the MRPC data. The typo corrector is saved at $TC_DIR/model_dumps and the associated vocab (necessary) is saved at TC_DIR/vocab (both will likely have to be premade in codalab. Now, we can repeat the original run except with --recoverer scrnn and tc_dir $TC_DIR.

Connected Component Clusters.

Finally, we're done with the baselines! To try using clusters as a defense, we use:

python run_glue.py --task_name $TASK_NAME --do_lower_case --do_train --do_eval --data_dir $GLUE_DIR/$TASK_NAME --output_dir model_output/$TASK_NAME --overwrite_output_dir --seed_output_dir --save_results --save_dir codalab --recoverer clust-rep --clusterer_path $CLUSTERER_PATH --augmentor identity --run_test --do_robust

Here, we include clusterer_path to load the mapping, and do_robust to compute the actual robust accuracy.

Agglomerative Clusters.

We will now construct our more complicated clusters, the agglomerative clusters. To leverage existing connected components for computational constraints, we parellelize. To do so, first make the directory where the two partial clusteres will be stored: $clusterers/vocab100000_ed1_gamma0.3$. Once the directory is made, run, in parallel:

python agglom_clusters.py --gamma 0.3 --clusterer_path $CLUSTERER_PATH --job_id 0 --num_jobs 2
python agglom_clusters.py --gamma 0.3 --clusterer_path $CLUSTERER_PATH --job_id 1 --num_jobs 2

This will save two partial clusterers. To combine them (after both jobs are complete) run:

python reconstruct_clusterers.py --clusterer_dir clusterers/vocab100000_ed1_gamma0.3

This will save the clusterer at clusterers/vocab100000_ed1_gamma0.3.pkl. Finally, run the identical commands as connected component clusters, but first use export CLUSTERER_PATH=clusterers/vocab100000_ed1_gamma0.3.pkl to run. Other value of gamma (only needed for SST-2) are loaded from premade saved files (from exactly this process) in saved_clusterers.

Internal permutation experiments

Much of the code remains the same for internal permutations. Just use --perturb_type intprm when constructing the clusters, --attack_type intprm when using an internal permutation attack, and --recoverer clust-intprm to use an internal permutation recoverer.

About

License:MIT License


Languages

Language:Python 94.6%Language:Shell 5.3%Language:Dockerfile 0.1%