caizhuo's repositories

dual_stage_attention_rnn

A Tensorflow Implementation of Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction

Language:PythonLicense:Apache-2.0Stargazers:1Issues:1Issues:0

Agriculture_KnowledgeGraph

农业知识图谱(KG):农业领域的信息检索,命名实体识别,关系抽取,分类树构建,数据挖掘

Language:PythonLicense:GPL-3.0Stargazers:0Issues:2Issues:0

AI-Challenger-Plant-Disease-Recognition

AI Challenger -- 农作物病害识别

Language:PythonStargazers:0Issues:2Issues:0

apisix-dashboard

Dashboard for Apache APISIX

Language:GoLicense:Apache-2.0Stargazers:0Issues:0Issues:0

BasemapTutorial

A Basemap tutorial for ReadTheDocs

Language:PythonLicense:CC0-1.0Stargazers:0Issues:0Issues:0

Chinese-Word-Vectors

100+ Chinese Word Vectors 上百种预训练中文词向量

Language:PythonLicense:Apache-2.0Stargazers:0Issues:2Issues:0

CIFAR-ZOO

PyTorch implementation of CNNs for CIFAR dataset (97.71% on cifar10)

Language:PythonLicense:MITStargazers:0Issues:0Issues:0

CNN-RNN-Yield-Prediction

This repository contains codes for the paper entitled "A CNN-RNN Framework for Crop Yield Prediction"

Language:PythonStargazers:0Issues:1Issues:0
Language:PythonStargazers:0Issues:1Issues:0

CS-Notes

:books: Computer Science Learning Notes

Stargazers:0Issues:0Issues:0

DA-RNN

📃 PyTorch Implementation of DA-RNN (arXiv:1704.02971)

Language:Jupyter NotebookStargazers:0Issues:1Issues:0

Deep-Learning

A few notebooks about deep learning in pytorch

Language:Jupyter NotebookStargazers:0Issues:1Issues:0

developer-roadmap

Roadmap to becoming a developer in 2022

License:NOASSERTIONStargazers:0Issues:0Issues:0

fastText

Library for fast text representation and classification.

Language:HTMLLicense:NOASSERTIONStargazers:0Issues:2Issues:0

GLC19

GeoLifeCLEF 2019

Language:PythonLicense:MITStargazers:0Issues:1Issues:0

Image-Classification

The data consists of images pertaining to 10 categories. The task is to train a convolutional neural net in keras for classifying these images. At the end, use the trained model to predict probabilities for each class for the given ‘test_image.jpg’ image.

Language:HTMLStargazers:0Issues:1Issues:0

incubator-echarts

A powerful, interactive charting and visualization library for browser

Language:JavaScriptLicense:Apache-2.0Stargazers:0Issues:0Issues:0

Information-Extraction-Chinese

Chinese Named Entity Recognition with IDCNN/biLSTM+CRF, and Relation Extraction with biGRU+2ATT 中文实体识别与关系提取

Language:PythonStargazers:0Issues:0Issues:0

irl-imitation

Implementation of Inverse Reinforcement Learning (IRL) algorithms in python/Tensorflow. Deep MaxEnt, MaxEnt, LPIRL

Language:PythonStargazers:0Issues:2Issues:0

keras

Deep Learning for humans

Language:PythonLicense:NOASSERTIONStargazers:0Issues:0Issues:0

keras_lr_finder

Plots the change of the loss function of a Keras model when the learning rate is exponentially increasing.

Language:PythonLicense:MITStargazers:0Issues:0Issues:0

NCRFpp

NCRF++, an Open-source Neural Sequence Labeling Toolkit. It includes character LSTM/CNN, word LSTM/CNN and softmax/CRF components. (code for COLING/ACL 2018 paper)

Language:PythonLicense:Apache-2.0Stargazers:0Issues:0Issues:0

pycrop-yield-prediction

A PyTorch Implementation of Jiaxuan You's Deep Gaussian Process for Crop Yield Prediction

Language:PythonLicense:MITStargazers:0Issues:1Issues:0

pytorch-image-classification

An introduction to image classification in PyTorch, by implementing a few key architectures.

Language:Jupyter NotebookLicense:MITStargazers:0Issues:0Issues:0

siamese_dssm

siamese dssm sentence_similarity sentece_similarity_rank tensorflow

Language:PythonStargazers:0Issues:0Issues:0

stanford-cs-230-deep-learning

VIP cheatsheets for Stanford's CS 230 Deep Learning

License:MITStargazers:0Issues:2Issues:0

tensorboardX

tensorboard for pytorch (and chainer, mxnet, numpy, ...)

Language:PythonLicense:MITStargazers:0Issues:2Issues:0

Tidy_Noses

Analysis is only as good as the data. These scripts automatically tidy raw data from common Robotic Olfaction machines (including electronic noses, tandem mass spectrometers, and gas chromatograph-ion mobility spectrometers) into a universally usable format. This will aide in data accessibility, streamline future data pipelines, and assist less data-savvy researchers in their analyses.

Language:PythonLicense:GPL-3.0Stargazers:0Issues:0Issues:0
Stargazers:0Issues:0Issues:0

YEDDA

YEDDA: A Lightweight Collaborative Text Span Annotation Tool. Code for ACL 2018 Best Demo Paper Nomination.

Language:PythonLicense:Apache-2.0Stargazers:0Issues:0Issues:0