π Technical report | π€ Bunny-v1.0-3B | π€ ModelScope | π§ WiseModel | π€ Data | π€ Data | π° Demo
Bunny is a family of lightweight but powerful multimodal models. It offers multiple plug-and-play vision encoders, like EVA-CLIP, SigLIP and language backbones, including Phi-1.5, StableLM-2 and Phi-2. To compensate for the decrease in model size, we construct more informative training data by curated selection from a broader data source. Remarkably, our Bunny-v1.0-3B model built upon SigLIP and Phi-2 outperforms the state-of-the-art MLLMs, not only in comparison with models of similar size but also against larger MLLMs (7B), and even achieves performance on par with 13B models.
- 2024.03.06 π₯ Bunny training data is released! Check more details about Bunny-v1.0-data in HuggingFace or ModelScope!
- 2024.02.20 π₯ Bunny technical report is ready! Check more details about Bunny here!
- 2024.02.07 π₯ Bunny is released! Bunny-v1.0-3B built upon SigLIP and Phi-2 outperforms the state-of-the-art MLLMs, not only in comparison with models of similar size but also against larger MLLMs (7B), and even achieves performance on par with LLaVA-13B!
Here we show a code snippet to show you how to use Bunny-v1.0-3B with HuggingFace transformers:
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings
# disable some warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')
# set device
torch.set_default_device('cpu') # or 'cuda'
# create model
model = AutoModelForCausalLM.from_pretrained(
'BAAI/Bunny-v1_0-3B',
torch_dtype=torch.float16,
device_map='auto',
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
'BAAI/Bunny-v1_0-3B',
trust_remote_code=True)
# text prompt
prompt = 'Why is the image funny?'
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:"
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
# image, sample images can be found in https://huggingface.co/BAAI/Bunny-v1_0-3B/tree/main/images
image = Image.open('example_2.png')
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
# generate
output_ids = model.generate(
input_ids,
images=image_tensor,
max_new_tokens=100,
use_cache=True)[0]
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
Before running the snippet, you need to install the following dependencies:
pip install torch transformers accelerate pillow
We advise users especially those in Chinese mainland to use ModelScope.
snapshot_download
can help you solve issues concerning downloading checkpoints.
Expand to see the snippet
import torch
import transformers
from modelscope import AutoTokenizer, AutoModelForCausalLM
from modelscope.hub.snapshot_download import snapshot_download
from PIL import Image
import warnings
# disable some warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')
# set device
torch.set_default_device('cpu') # or 'cuda'
# create model
snapshot_download(model_id='thomas/siglip-so400m-patch14-384')
model = AutoModelForCausalLM.from_pretrained(
'BAAI/Bunny-v1.0-3B',
torch_dtype=torch.float16,
device_map='auto',
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
'BAAI/Bunny-v1.0-3B',
trust_remote_code=True)
# text prompt
prompt = 'Why is the image funny?'
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:"
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
# image, sample images can be found in images folder on https://www.modelscope.cn/models/BAAI/Bunny-v1.0-3B/files
image = Image.open('example_2.png')
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
# generate
output_ids = model.generate(
input_ids,
images=image_tensor,
max_new_tokens=100,
use_cache=True)[0]
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
Before running the snippet, you need to install the following dependencies:
pip install torch modelscope transformers accelerate pillow
- Evaluation
Checkpoint | MME |
MME |
MMB |
MMB |
SEED | MMMU |
MMMU |
VQA |
GQA | SQA |
POPE |
---|---|---|---|---|---|---|---|---|---|---|---|
bunny-phi-1.5-eva-lora | 1213.7 | 278.9 | 60.9 | 56.8 | 56.4 | 30.0 | 28.4 | 76.5 | 60.4 | 58.2 | 86.1 |
bunny-stablelm-2-eva-lora | 1301.0 | 235.0 | 58.4 | 56.4 | 55.3 | 29.8 | 29.4 | 74.6 | 56.7 | 60.0 | 84.8 |
bunny-phi-2-eva-lora | 1421.0 | 285.4 | 68.6 | 67.4 | 62.2 | 35.9 | 32.6 | 78.9 | 62.3 | 69.1 | 87.1 |
bunny-phi-1.5-siglip-lora | 1230.0 | 237.5 | 61.2 | 59.7 | 57.7 | 30.0 | 29.1 | 78.0 | 61.1 | 61.3 | 85.8 |
bunny-stablelm-2-siglip-lora | 1366.8 | 236.1 | 65.1 | 62.8 | 58.8 | 29.9 | 29.8 | 78.9 | 60.9 | 61.1 | 85.9 |
Bunny-v1.0-3B/bunny-phi-2-siglip | 1488.8 | 289.3 | 69.2 | 68.6 | 62.5 | 38.2 | 33.0 | 79.8 | 62.5 | 70.9 | 86.8 |
The model with the best performance is denoted as Bunny-v1.0-3B or bunny-phi-2-siglip, whose merged weights can be found here and the LoRA weights can be found here.
- Training details
-
CUDA and cuDNN
We use CUDA 11.8 and cuDNN 8.7.0. We actually use the CUDA docker by NVIDIA:
docker pull nvcr.io/nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04
. CUDA 12 is fine, too. -
Create a conda virtual environment and activate it:
conda create -n bunny python=3.10 conda activate bunny
-
Basic requirements
pip install --upgrade pip # enable PEP 660 support pip install transformers pip install torch torchvision xformers --index-url https://download.pytorch.org/whl/cu118
-
Install apex
# https://github.com/NVIDIA/apex#from-source pip install ninja git clone https://github.com/NVIDIA/apex cd apex # if pip >= 23.1 (ref: https://pip.pypa.io/en/stable/news/#v23-1) which supports multiple `--config-settings` with the same key... pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./ # otherwise pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./
-
Install flash-attention
# https://github.com/Dao-AILab/flash-attention?tab=readme-ov-file#installation-and-features pip install packaging pip install flash-attn --no-build-isolation
-
Install bunny and other requirements
git clone https://github.com/BAAI-DCAI/Bunny.git cd Bunny pip install -e .
Bunny training consists of two stages: (1) pretrain stage: use data to connect a frozen pretrained vision encoder to a frozen LLM, and only the connector is trained; (2) visual instruction tuning stage: use data to teach the model to follow multimodal instructions, where the connector and learnable LLM parameters are updated.
Bunny is trained on 8 A100 GPUs. To train on fewer GPUs, you can reduce the per_device_train_batch_size
and increase the gradient_accumulation_steps
accordingly. Always keep the global batch size the same: global_batch_size
= per_device_train_batch_size
gradient_accumulation_steps
num_gpus
.
Currently, we support several vision encoders and LLMs.
For vision encoders, we support CLIP, EVA-CLIP and SigLIP.
Vision Encoders | Download Link |
---|---|
clip-vit-large-patch14-336 | openai/clip-vit-large-patch14-336 |
EVA02_CLIP_L_336_psz14_s6B | QuanSun/EVA-CLIP |
siglip-so400m-patch14-384 | google/siglip-so400m-patch14-384 |
For LLMs, we support phi-1.5, stablelm-2 and phi-2.
MODEL_TYPE | LLM | Download Link |
---|---|---|
phi-1.5 | phi-1_5 | microsoft/phi-1_5 |
stablelm-2 | stablelm-2-1_6b | stabilityai/stablelm-2-1_6b |
phi-2 | phi-2 | microsoft/phi-2 |
Note that there are many variants of above models. We build and test our code based on the exact versions mentioned above. More models will be supported in the future!
-
Data preparation
We use a high-quality coreset with less duplicates and more informative samples of LAION-2B built by this work. We randomly sample 2 million image-text pairs from the coreset and convert them to training format. The dataset is available here.
-
Run
Update
--model_name_or_path
and--vision_tower
to the paths of the LLM and vision encoder, respectively. UpdateMODEL_TYPE
andOUTPUT_DIR
accordingly. The global batch size is 256. The optimal learning rate varies for different settings and we list thelr
in our experiments in the Model Zoo.sh script/train/pretrain.sh
-
Data preparation
We build Bunny-695K by modifying SVIT-mix-665K for finetuning. The dataset is available here.
-
Run
Update
--model_name_or_path
and--vision_tower
to the paths of the LLM and vision encoder, respectively. UpdateMODEL_TYPE
,PRETRAIN_DIR
andOUTPUT_DIR
accordingly. The global batch size is 128.# full-parameter tuning sh script/train/finetune_full.sh # LoRA tuning sh script/train/finetune_lora.sh
-
Starting the Controller
First, start the controller. This service orchestrates communication between the web server and model workers.
python -m bunny.serve.controller \ --host 0.0.0.0 \ --port 10000
-
Launching the Gradio Web Server
To interact with the models through a web interface, start the Gradio web server.
Basic start:
python -m bunny.serve.gradio_web_server \ --controller http://localhost:10000 \ --model-list-mode reload
If you want to share your web server with others, use
--share
option. Note thatfrpc_linux_amd64_v0.2
may be missing and you can fix it following instructions printed on the screen.python -m bunny.serve.gradio_web_server \ --controller http://localhost:10000 \ --model-list-mode reload \ --share
Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.
-
Launching Model Workers
Model workers handle the processing of model inferences. Configure each worker with the appropriate model and start it.
-
For full-parameter tuning models
python -m bunny.serve.model_worker \ --host 0.0.0.0 \ --controller http://localhost:10000 \ --port 40000 \ --worker http://localhost:40000 \ --model-path /path/to/bunny/model \ --model-type phi-2 (or stablelm-2 or phi-1.5)
-
For LoRA tuning models
You can use
script/merge_lora_weights.py
to merge the LoRA weights and base LLM, and use it as above.python script/merge_lora_weights.py \ --model-path /path/to/bunny_lora_weights \ --model-base /path/to/base_llm_model \ --model-type phi-2 (or stablelm-2 or phi-1.5) \ --save-model-path /path/to/merged_model
Or you can use it without merging as below.
python -m bunny.serve.model_worker \ --host 0.0.0.0 \ --controller http://localhost:10000 \ --port 40000 \ --worker http://localhost:40000 \ --model-path /path/to/bunny_lora_weights \ --model-base /path/to/base_llm_model \ --model-type phi-2 (or stablelm-2 or phi-1.5)
-
For CLI-based inference without using the Gradio interface, use the following command:
-
For full-parameter tuning models
python -m bunny.serve.cli \ --model-path /path/to/bunny/model \ --model-type phi-2 (or stablelm-2 or phi-1.5) \ --image-file /path/to/the/test/image
-
For LoRA tuning models
You can use
script/merge_lora_weights.py
to merge the LoRA weights and base LLM, and use it as above.python script/merge_lora_weights.py \ --model-path /path/to/bunny_lora_weights \ --model-base /path/to/base_llm_model \ --model-type phi-2 (or stablelm-2 or phi-1.5) \ --save-model-path /path/to/merged_model
Or you can use it without merging as below.
python -m bunny.serve.cli \ --model-path /path/to/bunny_lora_weights \ --model-base /path/to/base_llm_model \ --model-type phi-2 (or stablelm-2 or phi-1.5) \ --image-file /path/to/the/test/image
For full-parameter tuning models, see evaluation_full.md.
For LoRA tuning models, see evaluation_lora.md.
If you find this repository helpful, please cite the paper below.
@article{he2024bunny,
title={Efficient Multimodal Learning from Data-centric Perspective},
author={He, Muyang and Liu, Yexin and Wu, Boya and Yuan, Jianhao and Wang, Yueze and Huang, Tiejun and Zhao, Bo},
journal={arXiv preprint arXiv:2402.11530},
year={2024}
}
This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses. The content of this project itself is licensed under the Apache license 2.0.
We build our project based on LLaVA: Large Language and Vision Assistant.