In this project, you will apply the skills you have acquired in this course to operationalize a Machine Learning Microservice API.
You are given a pre-trained, sklearn
model that has been trained to predict housing prices in Boston according to several features, such as average rooms in a home and data about highway access, teacher-to-pupil ratios, and so on. You can read more about the data, which was initially taken from Kaggle, on the data source site. This project tests your ability to operationalize a Python flask app—in a provided file, app.py
—that serves out predictions (inference) about housing prices through API calls. This project could be extended to any pre-trained machine learning model, such as those for image recognition and data labeling.
Your project goal is to operationalize this working, machine learning microservice using kubernetes, which is an open-source system for automating the management of containerized applications. In this project you will:
- Test your project code using linting
- Complete a Dockerfile to containerize this application
- Deploy your containerized application using Docker and make a prediction
- Improve the log statements in the source code for this application
- Configure Kubernetes and create a Kubernetes cluster
- Deploy a container using Kubernetes and make a prediction
- Upload a complete Github repo with CircleCI to indicate that your code has been tested
You can find a detailed project rubric, here.
The final implementation of the project will showcase your abilities to operationalize production microservices.
- Create a virtualenv and activate it
- Run
make install
to install the necessary dependencies
- Standalone:
python app.py
- Run in Docker:
./run_docker.sh
- Run in Kubernetes:
./run_kubernetes.sh
- Setup and Configure Docker locally
- Setup and Configure Kubernetes locally
- Create Flask app in Container
- Run via kubectl
app.py
contains the code to handle the prediction. An extra log was added.Dockerfile
is the file that holds the specification for how we want to package our docker image.run_docker.sh
Contains the code to test running the app using docker.run_kubernetes.sh
Contains the code to test running the app when deployed using kubernetes.upload_docker.sh
Script that builds, tags and uploads our docker image.output_txt_files/docker_out.txt
Output logs from the docker execution.output_txt_files/kubernetes_out.txt
Output logs from the kubernetes execution.