PyStan provides a Python interface to Stan, a package for Bayesian inference using the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo.
For more information on Stan and its modeling language, see the Stan User's Guide and Reference Manual at http://mc-stan.org/.
- HTML documentation: https://pystan.readthedocs.org
- Issue tracker: https://github.com/stan-dev/pystan/issues
- Source code repository: https://github.com/stan-dev/pystan
- Stan: http://mc-stan.org/
- Stan User's Guide and Reference Manual (pdf) available at http://mc-stan.org
- Scikit-learn integration: pystan-sklearn by @rgerkin.
Detailed installation instructions can be found in the doc/installation_beginner.md file.
NumPy and Cython (version 0.22 or greater) are required. matplotlib is optional.
PyStan and the required packages may be installed from the Python Package Index using pip
.
pip install pystan
Alternatively, if Cython (version 0.22 or greater) and NumPy are already available, PyStan may be installed from source with the following commands
git clone --recursive https://github.com/stan-dev/pystan.git
cd pystan
python setup.py install
If you encounter an ImportError
after compiling from source, try changing out of the source directory before attempting import pystan
. On Linux and OS X cd /tmp
will work.
import pystan
import numpy as np
import matplotlib.pyplot as plt
schools_code = """
data {
int<lower=0> J; // number of schools
real y[J]; // estimated treatment effects
real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
real mu;
real<lower=0> tau;
real eta[J];
}
transformed parameters {
real theta[J];
for (j in 1:J)
theta[j] = mu + tau * eta[j];
}
model {
eta ~ normal(0, 1);
y ~ normal(theta, sigma);
}
"""
schools_dat = {'J': 8,
'y': [28, 8, -3, 7, -1, 1, 18, 12],
'sigma': [15, 10, 16, 11, 9, 11, 10, 18]}
sm = pystan.StanModel(model_code=schools_code)
fit = sm.sampling(data=schools_dat, iter=1000, chains=4)
print(fit)
eta = fit.extract(permuted=True)['eta']
np.mean(eta, axis=0)
# if matplotlib is installed (optional, not required), a visual summary and
# traceplot are available
fit.plot()
plt.show()