ashishpatel26 / Predictive_Maintenance_using_Machine-Learning_Microsoft_Casestudy

Predictive_Maintenance_using_Machine-Learning_Microsoft_Casestudy

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Problem Description

A major problem faced by businesses in asset-heavy industries such as manufacturing is the significant costs that are associated with delays in the production process due to mechanical problems. Most of these businesses are interested in predicting these problems in advance so that they can proactively prevent the problems before they occur which will reduce the costly impact caused by downtime. Please refer to the playbook for predictive maintenance for a detailed explanation of common use cases in predictive maintenance and modelling approaches.

In this notebook, we follow the ideas from the playbook referenced above and aim to provide the steps of implementing a predictive model for a scenario which is based on a synthesis of multiple real-world business problems. This example brings together common data elements observed among many predictive maintenance use cases and the data itself is created by data simulation methods.

The business problem for this example is about predicting problems caused by component failures such that the question "What is the probability that a machine will fail in the near future due to a failure of a certain component?" can be answered. The problem is formatted as a multi-class classification problem and a machine learning algorithm is used to create the predictive model that learns from historical data collected from machines. In the following sections, we go through the steps of implementing such a model which are feature engineering, label construction, training and evaluation. First, we start by explaining the data sources in the next section.

Data Sources

Common data sources for predictive maintenance problems are :

  • Failure history: The failure history of a machine or component within the machine.
  • Maintenance history: The repair history of a machine, e.g. error codes, previous maintenance activities or component replacements.
  • Machine conditions and usage: The operating conditions of a machine e.g. data collected from sensors.
  • Machine features: The features of a machine, e.g. engine size, make and model, location.
  • Operator features: The features of the operator, e.g. gender, past experience The data for this example comes from 4 different sources which are real-time telemetry data collected from machines, error messages, historical maintenance records that include failures and machine information such as type and age.
import pandas as pd

telemetry = pd.read_csv('PdM_telemetry.csv')
errors = pd.read_csv('PdM_errors.csv')
maint = pd.read_csv('PdM_maint.csv')
failures = pd.read_csv('PdM_failures.csv')
machines = pd.read_csv('PdM_machines.csv')
# format datetime field which comes in as string
telemetry['datetime'] = pd.to_datetime(telemetry['datetime'], format="%Y-%m-%d %H:%M:%S")

print("Total number of telemetry records: %d" % len(telemetry.index))
print(telemetry.head())
telemetry.describe()
Total number of telemetry records: 876100
             datetime  machineID        volt      rotate    pressure  \
0 2015-01-01 06:00:00          1  176.217853  418.504078  113.077935   
1 2015-01-01 07:00:00          1  162.879223  402.747490   95.460525   
2 2015-01-01 08:00:00          1  170.989902  527.349825   75.237905   
3 2015-01-01 09:00:00          1  162.462833  346.149335  109.248561   
4 2015-01-01 10:00:00          1  157.610021  435.376873  111.886648   

   vibration  
0  45.087686  
1  43.413973  
2  34.178847  
3  41.122144  
4  25.990511  
machineID volt rotate pressure vibration
count 876100.000000 876100.000000 876100.000000 876100.000000 876100.000000
mean 50.500000 170.777736 446.605119 100.858668 40.385007
std 28.866087 15.509114 52.673886 11.048679 5.370361
min 1.000000 97.333604 138.432075 51.237106 14.877054
25% 25.750000 160.304927 412.305714 93.498181 36.777299
50% 50.500000 170.607338 447.558150 100.425559 40.237247
75% 75.250000 181.004493 482.176600 107.555231 43.784938
max 100.000000 255.124717 695.020984 185.951998 76.791072

Telemetry

The first data source is the telemetry time-series data which consists of voltage, rotation, pressure, and vibration measurements collected from 100 machines in real time averaged over every hour collected during the year 2015. Below, we display the first 10 records in the dataset. A summary of the whole dataset is also provided.

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns

plot_df = telemetry.loc[(telemetry['machineID'] == 1) & 
                        (telemetry['datetime'] > pd.to_datetime('2015-01-01')) & 
                        (telemetry['datetime'] <pd.to_datetime('2015-02-01')),
                        ['datetime','volt']]
sns.set_style("darkgrid")
plt.figure(figsize=(20, 8))
plt.plot(plot_df['datetime'], plot_df['volt'])
plt.ylabel('voltage')

# make x-axis ticks legible
adf = plt.gca().get_xaxis().get_major_formatter()
adf.scaled[1.0] = '%m-%d-%Y'
plt.xlabel('Date')
<matplotlib.text.Text at 0x2564dac0780>

png

Errors

The second major data source is the error logs. These are non-breaking errors thrown while the machine is still operational and do not constitute as failures. The error date and times are rounded to the closest hour since the telemetry data is collected at an hourly rate.

# format of datetime field which comes in as string
errors['datetime'] = pd.to_datetime(errors['datetime'],format = '%Y-%m-%d %H:%M:%S')
errors['errorID'] = errors['errorID'].astype('category')
print("Total Number of error records: %d" %len(errors.index))
errors.head()
Total Number of error records: 3919
datetime machineID errorID
0 2015-01-03 07:00:00 1 error1
1 2015-01-03 20:00:00 1 error3
2 2015-01-04 06:00:00 1 error5
3 2015-01-10 15:00:00 1 error4
4 2015-01-22 10:00:00 1 error4
sns.set_style("darkgrid")
plt.figure(figsize=(20, 8))
errors['errorID'].value_counts().plot(kind='bar')
plt.ylabel('Count')
errors['errorID'].value_counts()
error1    1010
error2     988
error3     838
error4     727
error5     356
Name: errorID, dtype: int64

png

Maintenance

These are the scheduled and unscheduled maintenance records which correspond to both regular inspection of components as well as failures. A record is generated if a component is replaced during the scheduled inspection or replaced due to a breakdown. The records that are created due to breakdowns will be called failures which is explained in the later sections. Maintenance data has both 2014 and 2015 records.

maint['datetime'] = pd.to_datetime(maint['datetime'], format='%Y-%m-%d %H:%M:%S')
maint['comp'] = maint['comp'].astype('category')
print("Total Number of maintenance Records: %d" %len(maint.index))
maint.head()
Total Number of maintenance Records: 3286
datetime machineID comp
0 2014-06-01 06:00:00 1 comp2
1 2014-07-16 06:00:00 1 comp4
2 2014-07-31 06:00:00 1 comp3
3 2014-12-13 06:00:00 1 comp1
4 2015-01-05 06:00:00 1 comp4
sns.set_style("darkgrid")
plt.figure(figsize=(10, 4))
maint['comp'].value_counts().plot(kind='bar')
plt.ylabel('Count')
maint['comp'].value_counts()
comp2    863
comp4    811
comp3    808
comp1    804
Name: comp, dtype: int64

png

Machines

This data set includes some information about the machines: model type and age (years in service).

machines['model'] = machines['model'].astype('category')

print("Total number of machines: %d" % len(machines.index))
machines.head()
Total number of machines: 100
machineID model age
0 1 model3 18
1 2 model4 7
2 3 model3 8
3 4 model3 7
4 5 model3 2
sns.set_style("darkgrid")
plt.figure(figsize=(15, 6))
_, bins, _ = plt.hist([machines.loc[machines['model'] == 'model1', 'age'],
                       machines.loc[machines['model'] == 'model2', 'age'],
                       machines.loc[machines['model'] == 'model3', 'age'],
                       machines.loc[machines['model'] == 'model4', 'age']],
                       20, stacked=True, label=['model1', 'model2', 'model3', 'model4'])
plt.xlabel('Age (yrs)')
plt.ylabel('Count')
plt.legend()
<matplotlib.legend.Legend at 0x2564dda9898>

png

Failures

These are the records of component replacements due to failures. Each record has a date and time, machine ID, and failed component type.

# format datetime field which comes in as string
failures['datetime'] = pd.to_datetime(failures['datetime'], format="%Y-%m-%d %H:%M:%S")
failures['failure'] = failures['failure'].astype('category')

print("Total number of failures: %d" % len(failures.index))
failures.head()
Total number of failures: 761
datetime machineID failure
0 2015-01-05 06:00:00 1 comp4
1 2015-03-06 06:00:00 1 comp1
2 2015-04-20 06:00:00 1 comp2
3 2015-06-19 06:00:00 1 comp4
4 2015-09-02 06:00:00 1 comp4
sns.set_style("darkgrid")
plt.figure(figsize=(15, 4))
failures['failure'].value_counts().plot(kind='bar')
plt.ylabel('Count')
failures['failure'].value_counts()
comp2    259
comp1    192
comp4    179
comp3    131
Name: failure, dtype: int64

png

Feature Engineering

The first step in predictive maintenance applications is feature engineering which requires bringing the different data sources together to create features that best describe a machines's health condition at a given point in time. In the next sections, several feature engineering methods are used to create features based on the properties of each data source.

Lag Features from Telemetry

Telemetry data almost always comes with time-stamps which makes it suitable for calculating lagging features. A common method is to pick a window size for the lag features to be created and compute rolling aggregate measures such as mean, standard deviation, minimum, maximum, etc. to represent the short term history of the telemetry over the lag window. In the following, rolling mean and standard deviation of the telemetry data over the last 3 hour lag window is calculated for every 3 hours.

# Calculate mean values for telemetry features
temp = []
fields = ['volt', 'rotate', 'pressure', 'vibration']
for col in fields:
    temp.append(pd.pivot_table(telemetry,
                               index='datetime',
                               columns='machineID',
                               values=col).resample('3H', closed='left', label='right', how='mean').unstack())
telemetry_mean_3h = pd.concat(temp, axis=1)
telemetry_mean_3h.columns = [i + 'mean_3h' for i in fields]
telemetry_mean_3h.reset_index(inplace=True)
C:\Program Files\Microsoft\ML Server\PYTHON_SERVER\lib\site-packages\ipykernel_launcher.py:8: FutureWarning: how in .resample() is deprecated
the new syntax is .resample(...).mean()
# Calculate mean values for telemetry features
temp = []
fields = ['volt', 'rotate', 'pressure', 'vibration']
for col in fields:
    temp.append(pd.pivot_table(telemetry,
                               index='datetime',
                               columns='machineID',
                               values=col).resample('3H', closed='left', label='right', how='mean').unstack())
telemetry_mean_3h = pd.concat(temp, axis=1)
telemetry_mean_3h.columns = [i + 'mean_3h' for i in fields]
telemetry_mean_3h.reset_index(inplace=True)

# repeat for standard deviation
temp = []
for col in fields:
    temp.append(pd.pivot_table(telemetry,
                               index='datetime',
                               columns='machineID',
                               values=col).resample('3H', closed='left', label='right', how='std').unstack())
telemetry_sd_3h = pd.concat(temp, axis=1)
telemetry_sd_3h.columns = [i + 'sd_3h' for i in fields]
telemetry_sd_3h.reset_index(inplace=True)

telemetry_mean_3h.head()
C:\Program Files\Microsoft\ML Server\PYTHON_SERVER\lib\site-packages\ipykernel_launcher.py:8: FutureWarning: how in .resample() is deprecated
the new syntax is .resample(...).mean()
  
C:\Program Files\Microsoft\ML Server\PYTHON_SERVER\lib\site-packages\ipykernel_launcher.py:19: FutureWarning: how in .resample() is deprecated
the new syntax is .resample(...).std()
machineID datetime voltmean_3h rotatemean_3h pressuremean_3h vibrationmean_3h
0 1 2015-01-01 09:00:00 170.028993 449.533798 94.592122 40.893502
1 1 2015-01-01 12:00:00 164.192565 403.949857 105.687417 34.255891
2 1 2015-01-01 15:00:00 168.134445 435.781707 107.793709 41.239405
3 1 2015-01-01 18:00:00 165.514453 430.472823 101.703289 40.373739
4 1 2015-01-01 21:00:00 168.809347 437.111120 90.911060 41.738542

For capturing a longer term effect, 24 hour lag features are also calculated as below.

temp = []
fields = ['volt', 'rotate', 'pressure', 'vibration']
for col in fields:
    temp.append(pd.rolling_mean(pd.pivot_table(telemetry,
                                               index='datetime',
                                               columns='machineID',
                                               values=col), window=24).resample('3H',
                                                                                closed='left',
                                                                                label='right',
                                                                                how='first').unstack())
telemetry_mean_24h = pd.concat(temp, axis=1)
telemetry_mean_24h.columns = [i + 'mean_24h' for i in fields]
telemetry_mean_24h.reset_index(inplace=True)
telemetry_mean_24h = telemetry_mean_24h.loc[-telemetry_mean_24h['voltmean_24h'].isnull()]

# repeat for standard deviation
temp = []
fields = ['volt', 'rotate', 'pressure', 'vibration']
for col in fields:
    temp.append(pd.rolling_std(pd.pivot_table(telemetry,
                                               index='datetime',
                                               columns='machineID',
                                               values=col), window=24).resample('3H',
                                                                                closed='left',
                                                                                label='right',
                                                                                how='first').unstack())
telemetry_sd_24h = pd.concat(temp, axis=1)
telemetry_sd_24h.columns = [i + 'sd_24h' for i in fields]
telemetry_sd_24h = telemetry_sd_24h.loc[-telemetry_sd_24h['voltsd_24h'].isnull()]
telemetry_sd_24h.reset_index(inplace=True)

# Notice that a 24h rolling average is not available at the earliest timepoints
telemetry_mean_24h.head(10)
C:\Program Files\Microsoft\ML Server\PYTHON_SERVER\lib\site-packages\ipykernel_launcher.py:7: FutureWarning: pd.rolling_mean is deprecated for DataFrame and will be removed in a future version, replace with 
	DataFrame.rolling(window=24,center=False).mean()
  import sys
C:\Program Files\Microsoft\ML Server\PYTHON_SERVER\lib\site-packages\ipykernel_launcher.py:10: FutureWarning: how in .resample() is deprecated
the new syntax is .resample(...).first()
  # Remove the CWD from sys.path while we load stuff.
C:\Program Files\Microsoft\ML Server\PYTHON_SERVER\lib\site-packages\ipykernel_launcher.py:23: FutureWarning: pd.rolling_std is deprecated for DataFrame and will be removed in a future version, replace with 
	DataFrame.rolling(window=24,center=False).std()
C:\Program Files\Microsoft\ML Server\PYTHON_SERVER\lib\site-packages\ipykernel_launcher.py:26: FutureWarning: how in .resample() is deprecated
the new syntax is .resample(...).first()
machineID datetime voltmean_24h rotatemean_24h pressuremean_24h vibrationmean_24h
7 1 2015-01-02 06:00:00 169.733809 445.179865 96.797113 40.385160
8 1 2015-01-02 09:00:00 170.614862 446.364859 96.849785 39.736826
9 1 2015-01-02 12:00:00 169.893965 447.009407 97.715600 39.498374
10 1 2015-01-02 15:00:00 171.243444 444.233563 96.666060 40.229370
11 1 2015-01-02 18:00:00 170.792486 448.440437 95.766838 40.055214
12 1 2015-01-02 21:00:00 170.556674 452.267095 98.065860 40.033247
13 1 2015-01-03 00:00:00 168.460525 451.031783 99.273286 38.903462
14 1 2015-01-03 03:00:00 169.772951 447.502464 99.005946 39.389725
15 1 2015-01-03 06:00:00 170.900562 453.864597 100.877342 38.696225
16 1 2015-01-03 09:00:00 169.533156 454.785072 100.050567 39.449734

Next, the columns of the feature datasets created earlier are merged to create the final feature set from telemetry.

# merge columns of feature sets created earlier
telemetry_feat = pd.concat([telemetry_mean_3h,
                            telemetry_sd_3h.ix[:, 2:6],
                            telemetry_mean_24h.ix[:, 2:6],
                            telemetry_sd_24h.ix[:, 2:6]], axis=1).dropna()
telemetry_feat.describe()
machineID voltmean_3h rotatemean_3h pressuremean_3h vibrationmean_3h voltsd_3h rotatesd_3h pressuresd_3h vibrationsd_3h voltmean_24h rotatemean_24h pressuremean_24h vibrationmean_24h voltsd_24h rotatesd_24h pressuresd_24h vibrationsd_24h
count 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000
mean 50.380935 170.774427 446.609386 100.858340 40.383609 13.300173 44.453951 8.885780 4.440575 170.775661 446.609874 100.857574 40.383881 14.919452 49.950788 10.046380 5.002089
std 28.798424 9.498824 33.119738 7.411701 3.475512 6.966389 23.214291 4.656364 2.319989 4.720237 18.070458 4.737293 2.058059 2.261097 7.684305 1.713206 0.799599
min 1.000000 125.532506 211.811184 72.118639 26.569635 0.025509 0.078991 0.027417 0.015278 155.812721 266.010419 91.057429 35.060087 6.380619 18.385248 4.145308 2.144863
25% 25.000000 164.447794 427.564793 96.239534 38.147458 8.028675 26.906319 5.369959 2.684556 168.072275 441.542561 98.669734 39.354077 13.359069 44.669022 8.924165 4.460675
50% 50.000000 170.432407 448.380260 100.235357 40.145874 12.495542 41.793798 8.345801 4.173704 170.212704 449.206885 100.099533 40.072618 14.854186 49.617459 9.921332 4.958793
75% 75.000000 176.610017 468.443933 104.406534 42.226898 17.688520 59.092354 11.789358 5.898512 172.462228 456.366349 101.613047 40.833112 16.395372 54.826993 10.980250 5.484430
max 100.000000 241.420717 586.682904 162.309656 69.311324 58.444332 179.903039 35.659369 18.305595 220.782618 499.096975 152.310351 61.932124 27.664538 103.819404 28.654103 12.325783
telemetry_feat.head()
machineID datetime voltmean_3h rotatemean_3h pressuremean_3h vibrationmean_3h voltsd_3h rotatesd_3h pressuresd_3h vibrationsd_3h voltmean_24h rotatemean_24h pressuremean_24h vibrationmean_24h voltsd_24h rotatesd_24h pressuresd_24h vibrationsd_24h
7 1 2015-01-02 06:00:00 180.133784 440.608320 94.137969 41.551544 21.322735 48.770512 2.135684 10.037208 169.733809 445.179865 96.797113 40.385160 15.726970 39.648116 11.904700 5.601191
8 1 2015-01-02 09:00:00 176.364293 439.349655 101.553209 36.105580 18.952210 51.329636 13.789279 6.737739 170.614862 446.364859 96.849785 39.736826 15.635083 41.828592 11.326412 5.583521
9 1 2015-01-02 12:00:00 160.384568 424.385316 99.598722 36.094637 13.047080 13.702496 9.988609 1.639962 169.893965 447.009407 97.715600 39.498374 13.995465 40.843882 11.036546 5.561553
10 1 2015-01-02 15:00:00 170.472461 442.933997 102.380586 40.483002 16.642354 56.290447 3.305739 8.854145 171.243444 444.233563 96.666060 40.229370 13.100364 43.409841 10.972862 6.068674
11 1 2015-01-02 18:00:00 163.263806 468.937558 102.726648 40.921802 17.424688 38.680380 9.105775 3.060781 170.792486 448.440437 95.766838 40.055214 13.808489 43.742304 10.988704 7.286129

Lag Features from Errors

Like telemetry data, errors come with timestamps. An important difference is that the error IDs are categorical values and should not be averaged over time intervals like the telemetry measurements. Instead, we count the number of errors of each type in a lagging window. We begin by reformatting the error data to have one entry per machine per time at which at least one error occurred:

errors
datetime machineID errorID
0 2015-01-03 07:00:00 1 error1
1 2015-01-03 20:00:00 1 error3
2 2015-01-04 06:00:00 1 error5
3 2015-01-10 15:00:00 1 error4
4 2015-01-22 10:00:00 1 error4
5 2015-01-25 15:00:00 1 error4
6 2015-01-27 04:00:00 1 error1
7 2015-03-03 22:00:00 1 error2
8 2015-03-05 06:00:00 1 error1
9 2015-03-20 18:00:00 1 error1
10 2015-03-26 01:00:00 1 error2
11 2015-03-31 23:00:00 1 error1
12 2015-04-19 06:00:00 1 error2
13 2015-04-19 06:00:00 1 error3
14 2015-04-29 19:00:00 1 error4
15 2015-05-04 23:00:00 1 error2
16 2015-05-12 09:00:00 1 error1
17 2015-05-21 07:00:00 1 error4
18 2015-05-24 02:00:00 1 error3
19 2015-05-25 05:00:00 1 error1
20 2015-06-09 06:00:00 1 error3
21 2015-06-18 06:00:00 1 error5
22 2015-06-23 10:00:00 1 error3
23 2015-08-23 19:00:00 1 error1
24 2015-08-30 01:00:00 1 error3
25 2015-09-01 06:00:00 1 error5
26 2015-09-13 17:00:00 1 error2
27 2015-09-15 06:00:00 1 error1
28 2015-10-01 23:00:00 1 error1
29 2015-10-15 05:00:00 1 error1
... ... ... ...
3889 2015-01-16 00:00:00 100 error4
3890 2015-02-01 10:00:00 100 error1
3891 2015-02-11 06:00:00 100 error1
3892 2015-02-12 21:00:00 100 error1
3893 2015-03-08 15:00:00 100 error1
3894 2015-04-27 04:00:00 100 error4
3895 2015-04-27 22:00:00 100 error5
3896 2015-05-16 23:00:00 100 error2
3897 2015-05-17 13:00:00 100 error2
3898 2015-05-22 02:00:00 100 error3
3899 2015-07-05 16:00:00 100 error3
3900 2015-07-19 01:00:00 100 error2
3901 2015-08-14 16:00:00 100 error4
3902 2015-08-30 15:00:00 100 error4
3903 2015-09-09 06:00:00 100 error1
3904 2015-09-14 23:00:00 100 error3
3905 2015-10-03 05:00:00 100 error3
3906 2015-10-09 07:00:00 100 error1
3907 2015-10-17 02:00:00 100 error3
3908 2015-10-17 12:00:00 100 error1
3909 2015-10-24 23:00:00 100 error1
3910 2015-10-27 21:00:00 100 error2
3911 2015-11-05 02:00:00 100 error3
3912 2015-11-07 17:00:00 100 error1
3913 2015-11-12 01:00:00 100 error1
3914 2015-11-21 08:00:00 100 error2
3915 2015-12-04 02:00:00 100 error1
3916 2015-12-08 06:00:00 100 error2
3917 2015-12-08 06:00:00 100 error3
3918 2015-12-22 03:00:00 100 error3

3919 rows × 3 columns

# create a column for each error type
error_count = pd.get_dummies(errors.set_index('datetime')).reset_index()
error_count
error_count.columns = ['datetime', 'machineID', 'error1', 'error2', 'error3', 'error4', 'error5']
error_count.head(13)
datetime machineID error1 error2 error3 error4 error5
0 2015-01-03 07:00:00 1 1 0 0 0 0
1 2015-01-03 20:00:00 1 0 0 1 0 0
2 2015-01-04 06:00:00 1 0 0 0 0 1
3 2015-01-10 15:00:00 1 0 0 0 1 0
4 2015-01-22 10:00:00 1 0 0 0 1 0
5 2015-01-25 15:00:00 1 0 0 0 1 0
6 2015-01-27 04:00:00 1 1 0 0 0 0
7 2015-03-03 22:00:00 1 0 1 0 0 0
8 2015-03-05 06:00:00 1 1 0 0 0 0
9 2015-03-20 18:00:00 1 1 0 0 0 0
10 2015-03-26 01:00:00 1 0 1 0 0 0
11 2015-03-31 23:00:00 1 1 0 0 0 0
12 2015-04-19 06:00:00 1 0 1 0 0 0
# combine errors for a given machine in a given hour
error_count = error_count.groupby(['machineID','datetime']).sum().reset_index()
error_count.head(13)
machineID datetime error1 error2 error3 error4 error5
0 1 2015-01-03 07:00:00 1 0 0 0 0
1 1 2015-01-03 20:00:00 0 0 1 0 0
2 1 2015-01-04 06:00:00 0 0 0 0 1
3 1 2015-01-10 15:00:00 0 0 0 1 0
4 1 2015-01-22 10:00:00 0 0 0 1 0
5 1 2015-01-25 15:00:00 0 0 0 1 0
6 1 2015-01-27 04:00:00 1 0 0 0 0
7 1 2015-03-03 22:00:00 0 1 0 0 0
8 1 2015-03-05 06:00:00 1 0 0 0 0
9 1 2015-03-20 18:00:00 1 0 0 0 0
10 1 2015-03-26 01:00:00 0 1 0 0 0
11 1 2015-03-31 23:00:00 1 0 0 0 0
12 1 2015-04-19 06:00:00 0 1 1 0 0
error_count = telemetry[['datetime', 'machineID']].merge(error_count, on=['machineID', 'datetime'], how='left').fillna(0.0)
error_count.describe()
machineID error1 error2 error3 error4 error5
count 876100.000000 876100.000000 876100.000000 876100.000000 876100.000000 876100.000000
mean 50.500000 0.001153 0.001128 0.000957 0.000830 0.000406
std 28.866087 0.033934 0.033563 0.030913 0.028795 0.020154
min 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 25.750000 0.000000 0.000000 0.000000 0.000000 0.000000
50% 50.500000 0.000000 0.000000 0.000000 0.000000 0.000000
75% 75.250000 0.000000 0.000000 0.000000 0.000000 0.000000
max 100.000000 1.000000 1.000000 1.000000 1.000000 1.000000

Finally, we can compute the total number of errors of each type over the last 24 hours, for timepoints taken every three hours:

temp = []
fields = ['error%d' % i for i in range(1,6)]
for col in fields:
    temp.append(pd.rolling_sum(pd.pivot_table(error_count,
                                               index='datetime',
                                               columns='machineID',
                                               values=col), window=24).resample('3H',
                                                                             closed='left',
                                                                             label='right',
                                                                             how='first').unstack())
error_count = pd.concat(temp, axis=1)
error_count.columns = [i + 'count' for i in fields]
error_count.reset_index(inplace=True)
error_count = error_count.dropna()
error_count.describe()
C:\Program Files\Microsoft\ML Server\PYTHON_SERVER\lib\site-packages\ipykernel_launcher.py:7: FutureWarning: pd.rolling_sum is deprecated for DataFrame and will be removed in a future version, replace with 
	DataFrame.rolling(window=24,center=False).sum()
  import sys
C:\Program Files\Microsoft\ML Server\PYTHON_SERVER\lib\site-packages\ipykernel_launcher.py:10: FutureWarning: how in .resample() is deprecated
the new syntax is .resample(...).first()
  # Remove the CWD from sys.path while we load stuff.
machineID error1count error2count error3count error4count error5count
count 291400.00000 291400.000000 291400.000000 291400.000000 291400.000000 291400.000000
mean 50.50000 0.027649 0.027069 0.022907 0.019904 0.009753
std 28.86612 0.166273 0.164429 0.151453 0.140820 0.098797
min 1.00000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 25.75000 0.000000 0.000000 0.000000 0.000000 0.000000
50% 50.50000 0.000000 0.000000 0.000000 0.000000 0.000000
75% 75.25000 0.000000 0.000000 0.000000 0.000000 0.000000
max 100.00000 2.000000 2.000000 2.000000 2.000000 2.000000
error_count.head()
machineID datetime error1count error2count error3count error4count error5count
7 1 2015-01-02 06:00:00 0.0 0.0 0.0 0.0 0.0
8 1 2015-01-02 09:00:00 0.0 0.0 0.0 0.0 0.0
9 1 2015-01-02 12:00:00 0.0 0.0 0.0 0.0 0.0
10 1 2015-01-02 15:00:00 0.0 0.0 0.0 0.0 0.0
11 1 2015-01-02 18:00:00 0.0 0.0 0.0 0.0 0.0

Days Since Last Replacement from Maintenance

A crucial data set in this example is the maintenance records which contain the information of component replacement records. Possible features from this data set can be, for example, the number of replacements of each component in the last 3 months to incorporate the frequency of replacements. However, more relevent information would be to calculate how long it has been since a component is last replaced as that would be expected to correlate better with component failures since the longer a component is used, the more degradation should be expected.

As a side note, creating lagging features from maintenance data is not as straightforward as for telemetry and errors, so the features from this data are generated in a more custom way. This type of ad-hoc feature engineering is very common in predictive maintenance since domain knowledge plays a big role in understanding the predictors of a problem. In the following, the days since last component replacement are calculated for each component type as features from the maintenance data.

import numpy as np

# create a column for each error type
comp_rep = pd.get_dummies(maint.set_index('datetime')).reset_index()
comp_rep.columns = ['datetime', 'machineID', 'comp1', 'comp2', 'comp3', 'comp4']

# combine repairs for a given machine in a given hour
comp_rep = comp_rep.groupby(['machineID', 'datetime']).sum().reset_index()

# add timepoints where no components were replaced
comp_rep = telemetry[['datetime', 'machineID']].merge(comp_rep,
                                                      on=['datetime', 'machineID'],
                                                      how='outer').fillna(0).sort_values(by=['machineID', 'datetime'])

components = ['comp1', 'comp2', 'comp3', 'comp4']
for comp in components:
    # convert indicator to most recent date of component change
    comp_rep.loc[comp_rep[comp] < 1, comp] = None
    comp_rep.loc[-comp_rep[comp].isnull(), comp] = comp_rep.loc[-comp_rep[comp].isnull(), 'datetime']
    
    # forward-fill the most-recent date of component change
    comp_rep[comp] = comp_rep[comp].fillna(method='ffill')

# remove dates in 2014 (may have NaN or future component change dates)    
comp_rep = comp_rep.loc[comp_rep['datetime'] > pd.to_datetime('2015-01-01')]

# replace dates of most recent component change with days since most recent component change
for comp in components:
    comp_rep[comp] = (comp_rep['datetime'] - comp_rep[comp]) / np.timedelta64(1, 'D')
    
comp_rep.describe()
machineID comp1 comp2 comp3 comp4
count 876100.000000 876100.000000 876100.000000 876100.000000 876100.000000
mean 50.500000 53.525185 51.540806 52.725962 53.834191
std 28.866087 62.491679 59.269254 58.873114 59.707978
min 1.000000 0.000000 0.000000 0.000000 0.000000
25% 25.750000 13.291667 12.125000 13.125000 13.000000
50% 50.500000 32.791667 29.666667 32.291667 32.500000
75% 75.250000 68.708333 66.541667 67.333333 70.458333
max 100.000000 491.958333 348.958333 370.958333 394.958333
comp_rep.head()
datetime machineID comp1 comp2 comp3 comp4
0 2015-01-01 06:00:00 1 19.000000 214.000000 154.000000 169.000000
1 2015-01-01 07:00:00 1 19.041667 214.041667 154.041667 169.041667
2 2015-01-01 08:00:00 1 19.083333 214.083333 154.083333 169.083333
3 2015-01-01 09:00:00 1 19.125000 214.125000 154.125000 169.125000
4 2015-01-01 10:00:00 1 19.166667 214.166667 154.166667 169.166667

Machine Features

The machine features can be used without further modification. These include descriptive information about the type of each machine and its age (number of years in service). If the age information had been recorded as a "first use date" for each machine, a transformation would have been necessary to turn those into a numeric values indicating the years in service.

Lastly, we merge all the feature data sets we created earlier to get the final feature matrix.

telemetry_feat
machineID datetime voltmean_3h rotatemean_3h pressuremean_3h vibrationmean_3h voltsd_3h rotatesd_3h pressuresd_3h vibrationsd_3h voltmean_24h rotatemean_24h pressuremean_24h vibrationmean_24h voltsd_24h rotatesd_24h pressuresd_24h vibrationsd_24h
7 1 2015-01-02 06:00:00 180.133784 440.608320 94.137969 41.551544 21.322735 48.770512 2.135684 10.037208 169.733809 445.179865 96.797113 40.385160 15.726970 39.648116 11.904700 5.601191
8 1 2015-01-02 09:00:00 176.364293 439.349655 101.553209 36.105580 18.952210 51.329636 13.789279 6.737739 170.614862 446.364859 96.849785 39.736826 15.635083 41.828592 11.326412 5.583521
9 1 2015-01-02 12:00:00 160.384568 424.385316 99.598722 36.094637 13.047080 13.702496 9.988609 1.639962 169.893965 447.009407 97.715600 39.498374 13.995465 40.843882 11.036546 5.561553
10 1 2015-01-02 15:00:00 170.472461 442.933997 102.380586 40.483002 16.642354 56.290447 3.305739 8.854145 171.243444 444.233563 96.666060 40.229370 13.100364 43.409841 10.972862 6.068674
11 1 2015-01-02 18:00:00 163.263806 468.937558 102.726648 40.921802 17.424688 38.680380 9.105775 3.060781 170.792486 448.440437 95.766838 40.055214 13.808489 43.742304 10.988704 7.286129
12 1 2015-01-02 21:00:00 163.278466 446.493166 104.387585 38.068116 21.580492 41.380958 20.725597 6.932127 170.556674 452.267095 98.065860 40.033247 14.187985 40.676672 11.942227 8.723238
13 1 2015-01-03 00:00:00 172.191198 434.214692 93.747282 39.716482 16.369836 14.636041 18.817326 3.426997 168.460525 451.031783 99.273286 38.903462 13.707794 40.509184 10.141026 8.634082
14 1 2015-01-03 03:00:00 175.210027 504.845430 108.512153 37.763933 5.991921 16.062702 6.382608 3.449468 169.772951 447.502464 99.005946 39.389725 11.818603 44.468516 9.444955 8.332673
15 1 2015-01-03 06:00:00 181.690108 472.783187 93.395164 38.621099 11.514450 47.880443 2.177029 7.670520 170.900562 453.864597 100.877342 38.696225 12.069391 46.669661 8.609526 8.089348
16 1 2015-01-03 09:00:00 172.382935 505.141261 98.524373 49.965572 7.065150 56.849540 5.230039 2.687565 169.533156 454.785072 100.050567 39.449734 12.755234 44.016114 9.893704 7.013132
17 1 2015-01-03 12:00:00 174.303858 436.182686 94.092681 50.999589 19.017196 26.420163 7.661944 3.516734 170.866013 463.871291 99.360632 40.766639 12.848646 45.090576 9.846662 5.888262
18 1 2015-01-03 15:00:00 176.246348 451.646684 98.102389 59.198241 12.572504 31.574383 15.559351 6.562087 171.041651 463.701291 98.965877 42.396850 14.968351 37.088898 10.133452 5.702356
19 1 2015-01-03 18:00:00 158.433533 453.900213 98.878129 46.851925 5.136952 21.216569 11.400650 2.688559 171.244533 464.320613 98.853189 44.608814 17.058217 36.617908 9.867174 5.743753
20 1 2015-01-03 21:00:00 162.387954 454.140377 92.651129 54.261635 4.563331 57.747656 4.754203 5.118076 171.385039 459.937314 97.292157 45.284751 18.405763 35.819938 9.743769 5.246435
21 1 2015-01-04 00:00:00 174.243192 394.998095 99.829845 46.930738 6.268730 29.167663 10.564287 6.822855 171.880633 461.437128 96.786742 47.311018 18.249831 42.055638 10.961128 5.093464
22 1 2015-01-04 03:00:00 176.443361 459.528820 111.855296 55.296056 16.330285 20.602657 7.064583 4.651468 172.513202 456.429165 97.742700 48.416442 19.141287 37.018824 10.642956 4.618287
23 1 2015-01-04 06:00:00 186.092896 451.641253 107.989359 55.308074 13.489090 62.185045 5.118176 4.904365 172.686245 453.387589 99.304019 51.158654 18.887033 36.997459 11.042775 5.195423
24 1 2015-01-04 09:00:00 166.281848 453.787824 106.187582 51.990080 24.276228 23.621315 11.176731 3.394073 172.042428 450.418764 100.284484 52.153213 20.837993 34.051825 9.654971 5.066388
25 1 2015-01-04 12:00:00 175.412103 445.450581 100.887363 54.251534 34.918687 11.001625 10.580336 2.921501 171.219623 443.802134 102.358897 52.854420 21.298322 36.054002 9.885781 5.246894
26 1 2015-01-04 15:00:00 157.347716 451.882075 101.289380 48.602686 24.617739 28.950883 9.966729 2.356486 172.013443 444.882018 102.578580 52.789794 21.200183 38.544116 10.429692 7.192434
27 1 2015-01-04 18:00:00 176.450550 446.033068 84.521555 47.638836 8.071400 76.511343 2.636879 4.108621 170.176321 445.069594 102.359939 51.518719 18.814679 40.547527 11.133170 7.556313
28 1 2015-01-04 21:00:00 190.325814 422.692565 107.393234 49.552856 8.390777 7.176553 4.262645 7.598552 172.932248 444.618018 101.425508 52.135905 16.762469 49.373445 10.443534 8.545739
29 1 2015-01-05 00:00:00 169.985134 458.929418 91.494362 54.882021 9.451483 12.052752 3.685906 6.621183 175.121131 443.916392 102.130179 51.653294 17.435946 43.819375 10.830449 8.809530
30 1 2015-01-05 03:00:00 149.082619 412.180336 93.509785 54.386079 19.075952 30.715081 3.090266 6.530610 173.407255 446.265950 100.874614 52.529450 16.661364 47.266846 11.225440 9.068824
31 1 2015-01-05 06:00:00 185.782709 439.531288 99.413660 51.558082 14.495664 45.663743 4.289212 7.330397 170.757841 440.958228 98.716746 51.746749 17.863934 44.895080 10.675981 7.475304
32 1 2015-01-05 09:00:00 169.084809 463.433785 107.678774 41.710336 12.245544 61.759107 4.400233 9.750017 171.929104 443.448775 98.675590 51.780445 15.139300 45.766081 10.959268 6.855778
33 1 2015-01-05 12:00:00 165.518790 449.743255 110.377851 38.952082 23.170638 45.762142 14.009473 0.797364 170.908522 443.069042 98.830333 49.679550 13.985517 42.542001 11.050133 4.842842
34 1 2015-01-05 15:00:00 175.989642 419.863490 112.571146 41.514254 4.028327 20.148499 5.862629 9.702498 170.416326 443.555122 100.221328 48.481038 13.344630 39.327146 10.268539 4.884344
35 1 2015-01-05 18:00:00 188.576444 487.336742 88.967297 36.571052 8.278605 76.534023 11.892088 1.945849 173.315167 444.049581 101.633306 47.279992 15.793146 42.984028 10.006300 4.637101
36 1 2015-01-05 21:00:00 166.681364 481.685320 104.154110 38.662638 11.957697 25.052743 11.999161 4.804263 173.743459 446.505202 100.540356 45.527290 16.132288 40.754154 9.744855 4.591048
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
291370 100 2015-10-02 06:00:00 165.259415 432.364050 96.793097 38.697882 16.715588 9.197585 11.016730 9.167743 169.115085 459.202414 99.099044 39.342719 12.889019 60.409151 11.549081 5.671215
291371 100 2015-10-02 09:00:00 185.907346 465.062411 94.161434 36.156060 22.822289 64.351154 6.469484 1.656610 168.838507 455.101759 98.960206 38.277576 13.917591 56.810848 11.118412 6.061118
291372 100 2015-10-02 12:00:00 167.546991 448.203119 99.383591 39.659572 2.573507 84.299208 2.490792 2.252574 169.223690 463.630715 99.296474 38.406915 14.611939 56.534099 8.553177 5.893650
291373 100 2015-10-02 15:00:00 175.468904 441.861941 105.814802 38.788653 9.104554 48.615069 6.004070 3.244295 172.163049 458.787617 100.063674 38.458947 15.232866 49.321412 8.345687 5.292801
291374 100 2015-10-02 18:00:00 157.401371 459.332121 93.247465 42.236723 14.711827 45.268580 5.590642 2.204472 173.119397 456.196849 100.114215 39.063775 15.920072 48.742610 7.909495 5.249418
291375 100 2015-10-02 21:00:00 168.651510 430.056138 104.487324 35.735005 16.328969 45.108180 9.103806 6.093867 168.410263 448.519301 100.049480 39.083797 14.635941 50.313046 7.582133 5.108806
291376 100 2015-10-03 00:00:00 168.623762 497.504580 100.682235 40.610939 12.914771 25.775781 11.444951 3.359673 168.849711 450.330382 100.243957 38.469840 14.915283 50.148100 7.928488 5.518228
291377 100 2015-10-03 03:00:00 168.537058 441.837105 87.893111 40.076219 23.866338 36.817201 16.820180 0.482728 171.513651 452.462106 98.514174 38.626944 14.750503 44.620373 8.348839 5.182752
291378 100 2015-10-03 06:00:00 161.436752 401.579802 90.792431 35.624101 14.429283 85.801834 16.225371 1.396074 169.625319 451.508453 97.368816 38.762103 16.055332 49.218444 9.546008 5.020598
291379 100 2015-10-03 09:00:00 188.559785 491.929571 102.821662 40.034460 12.668164 41.768856 9.448383 8.454640 167.950194 453.659486 97.292065 38.635159 15.942467 59.763569 9.431896 4.476863
291380 100 2015-10-03 12:00:00 164.149847 466.463280 100.447025 40.694147 16.460088 31.589198 10.188202 5.086589 168.530246 448.103742 97.730594 39.228047 16.122100 57.394487 9.171658 4.866485
291381 100 2015-10-03 15:00:00 184.727094 487.140570 100.860907 36.430834 12.401664 57.508894 18.394116 7.153156 169.765458 458.759394 98.775532 38.935773 16.994700 55.665652 9.630112 4.896106
291382 100 2015-10-03 18:00:00 171.585447 479.021432 101.846824 49.115340 13.318878 40.471453 10.951704 0.649491 169.818254 460.880691 97.926823 39.295892 15.077105 56.097762 9.818266 4.919802
291383 100 2015-10-03 21:00:00 162.144446 404.865418 98.384468 35.389856 22.516178 36.216388 11.492089 7.269283 172.199254 459.599763 98.365107 39.964091 14.414241 59.222526 10.569736 4.693342
291384 100 2015-10-04 00:00:00 166.584930 437.980304 104.019479 43.766793 22.109109 65.256390 12.621841 1.793100 170.812061 453.681180 98.994157 40.013985 13.522301 61.197614 10.103349 4.286568
291385 100 2015-10-04 03:00:00 173.182209 452.585928 106.572235 40.534601 16.930726 38.788180 10.747137 6.510290 170.439828 455.036021 99.830401 40.129183 14.551122 65.430315 9.389132 4.484563
291386 100 2015-10-04 06:00:00 155.554082 464.175866 102.615428 36.003311 7.678204 24.248612 6.064152 5.007039 172.264492 453.800429 102.163329 40.050108 13.103400 62.190761 9.128160 4.502950
291387 100 2015-10-04 09:00:00 163.814555 433.614467 114.798438 36.454615 5.259901 40.947023 10.677648 8.252193 170.243198 455.333806 102.290708 40.197103 13.120654 57.910021 9.238228 4.803393
291388 100 2015-10-04 12:00:00 169.196188 403.488184 94.199431 39.189491 22.977467 27.176467 9.430194 13.841831 167.765844 451.355029 103.465520 40.252524 13.315211 59.466979 9.471171 4.442337
291389 100 2015-10-04 15:00:00 165.814250 446.765824 99.334107 44.464271 1.457549 58.086715 1.622380 3.173978 167.312650 439.435929 102.009695 40.435349 11.768963 60.646198 9.136786 5.149517
291390 100 2015-10-04 18:00:00 167.848340 438.393471 90.054937 40.301288 15.958412 40.168662 11.238292 3.633503 166.963446 438.276090 101.637723 40.172602 14.141910 58.372646 8.463179 5.221115
291391 100 2015-10-04 21:00:00 173.508300 439.917848 93.063793 38.750136 7.633479 44.399657 11.019912 4.952713 165.979125 435.138421 102.005617 39.497908 14.000620 59.820047 6.856021 5.392136
291392 100 2015-10-05 00:00:00 182.432617 497.264899 95.443869 40.594815 9.940475 77.558997 4.707020 3.106529 168.142646 447.915202 99.620102 39.635003 14.372707 59.563942 7.988174 5.256284
291393 100 2015-10-05 03:00:00 158.783988 438.405164 100.420803 40.153025 10.849108 72.556330 2.576581 4.504970 168.398872 448.148851 99.351099 39.518646 15.763140 57.682117 8.088214 5.301986
291394 100 2015-10-05 06:00:00 183.150826 426.209117 98.880399 34.418557 20.539063 29.605169 13.588936 7.168643 168.651040 446.075986 98.741443 39.840623 15.331755 60.839923 7.891711 5.269038
291395 100 2015-10-05 09:00:00 188.267556 407.256175 108.931184 36.553233 9.599915 40.722980 1.639521 5.724500 171.826650 441.278667 98.311919 39.196175 16.429023 62.147934 7.475540 5.448962
291396 100 2015-10-05 12:00:00 167.859576 465.992407 107.953155 42.708899 14.190347 92.277799 9.577243 0.735339 174.657123 444.147310 98.520388 38.820190 17.019808 64.730136 8.961444 5.833191
291397 100 2015-10-05 15:00:00 170.348099 434.234744 104.514343 38.607950 10.232598 49.524471 12.445345 2.596743 173.787879 448.842085 100.028549 39.375067 17.096392 64.718132 9.420879 5.738756
291398 100 2015-10-05 18:00:00 152.265370 459.557611 103.536524 40.718426 6.758667 27.051145 12.824247 2.752883 172.496791 442.086577 100.361794 38.943434 15.119775 65.929509 8.836617 6.139142
291399 100 2015-10-05 21:00:00 162.887965 481.415205 96.687092 37.162591 20.541773 55.057460 11.713728 3.539798 170.782713 448.188498 100.794970 38.980896 15.573014 61.859239 9.942610 6.191276

290601 rows × 18 columns

final_feat = telemetry_feat.merge(error_count, on=['datetime', 'machineID'], how='left')
final_feat = final_feat.merge(comp_rep, on=['datetime', 'machineID'], how='left')
final_feat = final_feat.merge(machines, on=['machineID'], how='left')

print(final_feat.head())
final_feat.describe()
   machineID            datetime  voltmean_3h  rotatemean_3h  pressuremean_3h  \
0          1 2015-01-02 06:00:00   180.133784     440.608320        94.137969   
1          1 2015-01-02 09:00:00   176.364293     439.349655       101.553209   
2          1 2015-01-02 12:00:00   160.384568     424.385316        99.598722   
3          1 2015-01-02 15:00:00   170.472461     442.933997       102.380586   
4          1 2015-01-02 18:00:00   163.263806     468.937558       102.726648   

   vibrationmean_3h  voltsd_3h  rotatesd_3h  pressuresd_3h  vibrationsd_3h  \
0         41.551544  21.322735    48.770512       2.135684       10.037208   
1         36.105580  18.952210    51.329636      13.789279        6.737739   
2         36.094637  13.047080    13.702496       9.988609        1.639962   
3         40.483002  16.642354    56.290447       3.305739        8.854145   
4         40.921802  17.424688    38.680380       9.105775        3.060781   

  ...   error2count  error3count  error4count  error5count   comp1    comp2  \
0 ...           0.0          0.0          0.0          0.0  20.000  215.000   
1 ...           0.0          0.0          0.0          0.0  20.125  215.125   
2 ...           0.0          0.0          0.0          0.0  20.250  215.250   
3 ...           0.0          0.0          0.0          0.0  20.375  215.375   
4 ...           0.0          0.0          0.0          0.0  20.500  215.500   

     comp3    comp4   model  age  
0  155.000  170.000  model3   18  
1  155.125  170.125  model3   18  
2  155.250  170.250  model3   18  
3  155.375  170.375  model3   18  
4  155.500  170.500  model3   18  

[5 rows x 29 columns]
machineID voltmean_3h rotatemean_3h pressuremean_3h vibrationmean_3h voltsd_3h rotatesd_3h pressuresd_3h vibrationsd_3h voltmean_24h ... error1count error2count error3count error4count error5count comp1 comp2 comp3 comp4 age
count 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 ... 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000 290601.000000
mean 50.380935 170.774427 446.609386 100.858340 40.383609 13.300173 44.453951 8.885780 4.440575 170.775661 ... 0.027560 0.027058 0.022846 0.019955 0.009780 53.382610 51.256589 52.536687 53.679601 11.345226
std 28.798424 9.498824 33.119738 7.411701 3.475512 6.966389 23.214291 4.656364 2.319989 4.720237 ... 0.166026 0.164401 0.151266 0.140998 0.098931 62.478424 59.156008 58.822946 59.658975 5.826345
min 1.000000 125.532506 211.811184 72.118639 26.569635 0.025509 0.078991 0.027417 0.015278 155.812721 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 25.000000 164.447794 427.564793 96.239534 38.147458 8.028675 26.906319 5.369959 2.684556 168.072275 ... 0.000000 0.000000 0.000000 0.000000 0.000000 13.250000 12.000000 13.000000 12.875000 7.000000
50% 50.000000 170.432407 448.380260 100.235357 40.145874 12.495542 41.793798 8.345801 4.173704 170.212704 ... 0.000000 0.000000 0.000000 0.000000 0.000000 32.625000 29.500000 32.125000 32.375000 12.000000
75% 75.000000 176.610017 468.443933 104.406534 42.226898 17.688520 59.092354 11.789358 5.898512 172.462228 ... 0.000000 0.000000 0.000000 0.000000 0.000000 68.500000 65.875000 67.125000 70.250000 16.000000
max 100.000000 241.420717 586.682904 162.309656 69.311324 58.444332 179.903039 35.659369 18.305595 220.782618 ... 2.000000 2.000000 2.000000 2.000000 2.000000 491.875000 348.875000 370.875000 394.875000 20.000000

8 rows × 27 columns

Label Construction

When using multi-class classification for predicting failure due to a problem, labelling is done by taking a time window prior to the failure of an asset and labelling the feature records that fall into that window as "about to fail due to a problem" while labelling all other records as "€œnormal." This time window should be picked according to the business case: in some situations it may be enough to predict failures hours in advance, while in others days or weeks may be needed to allow e.g. for arrival of replacement parts.

The prediction problem for this example scenerio is to estimate the probability that a machine will fail in the near future due to a failure of a certain component. More specifically, the goal is to compute the probability that a machine will fail in the next 24 hours due to a certain component failure (component 1, 2, 3, or 4). Below, a categorical failure feature is created to serve as the label. All records within a 24 hour window before a failure of component 1 have failure=comp1, and so on for components 2, 3, and 4; all records not within 24 hours of a component failure have failure=none.

labeled_features = final_feat.merge(failures, on=['datetime', 'machineID'], how='left')
labeled_features = labeled_features.fillna(method='bfill', limit=7) # fill backward up to 24h
labeled_features = labeled_features.fillna('none')
labeled_features.head()
machineID datetime voltmean_3h rotatemean_3h pressuremean_3h vibrationmean_3h voltsd_3h rotatesd_3h pressuresd_3h vibrationsd_3h ... error3count error4count error5count comp1 comp2 comp3 comp4 model age failure
0 1 2015-01-02 06:00:00 180.133784 440.608320 94.137969 41.551544 21.322735 48.770512 2.135684 10.037208 ... 0.0 0.0 0.0 20.000 215.000 155.000 170.000 model3 18 none
1 1 2015-01-02 09:00:00 176.364293 439.349655 101.553209 36.105580 18.952210 51.329636 13.789279 6.737739 ... 0.0 0.0 0.0 20.125 215.125 155.125 170.125 model3 18 none
2 1 2015-01-02 12:00:00 160.384568 424.385316 99.598722 36.094637 13.047080 13.702496 9.988609 1.639962 ... 0.0 0.0 0.0 20.250 215.250 155.250 170.250 model3 18 none
3 1 2015-01-02 15:00:00 170.472461 442.933997 102.380586 40.483002 16.642354 56.290447 3.305739 8.854145 ... 0.0 0.0 0.0 20.375 215.375 155.375 170.375 model3 18 none
4 1 2015-01-02 18:00:00 163.263806 468.937558 102.726648 40.921802 17.424688 38.680380 9.105775 3.060781 ... 0.0 0.0 0.0 20.500 215.500 155.500 170.500 model3 18 none

5 rows × 30 columns

Below is an example of records that are labeled as failure=comp4 in the failure column. Notice that the first 8 records all occur in the 24-hour window before the first recorded failure of component 4. The next 8 records are within the 24 hour window before another failure of component 4.

labeled_features.loc[labeled_features['failure'] == 'comp4'][:16]
machineID datetime voltmean_3h rotatemean_3h pressuremean_3h vibrationmean_3h voltsd_3h rotatesd_3h pressuresd_3h vibrationsd_3h ... error3count error4count error5count comp1 comp2 comp3 comp4 model age failure
17 1 2015-01-04 09:00:00 166.281848 453.787824 106.187582 51.990080 24.276228 23.621315 11.176731 3.394073 ... 1.0 0.0 1.0 22.125 217.125 157.125 172.125 model3 18 comp4
18 1 2015-01-04 12:00:00 175.412103 445.450581 100.887363 54.251534 34.918687 11.001625 10.580336 2.921501 ... 1.0 0.0 1.0 22.250 217.250 157.250 172.250 model3 18 comp4
19 1 2015-01-04 15:00:00 157.347716 451.882075 101.289380 48.602686 24.617739 28.950883 9.966729 2.356486 ... 1.0 0.0 1.0 22.375 217.375 157.375 172.375 model3 18 comp4
20 1 2015-01-04 18:00:00 176.450550 446.033068 84.521555 47.638836 8.071400 76.511343 2.636879 4.108621 ... 1.0 0.0 1.0 22.500 217.500 157.500 172.500 model3 18 comp4
21 1 2015-01-04 21:00:00 190.325814 422.692565 107.393234 49.552856 8.390777 7.176553 4.262645 7.598552 ... 1.0 0.0 1.0 22.625 217.625 157.625 172.625 model3 18 comp4
22 1 2015-01-05 00:00:00 169.985134 458.929418 91.494362 54.882021 9.451483 12.052752 3.685906 6.621183 ... 0.0 0.0 1.0 22.750 217.750 157.750 172.750 model3 18 comp4
23 1 2015-01-05 03:00:00 149.082619 412.180336 93.509785 54.386079 19.075952 30.715081 3.090266 6.530610 ... 0.0 0.0 1.0 22.875 217.875 157.875 172.875 model3 18 comp4
24 1 2015-01-05 06:00:00 185.782709 439.531288 99.413660 51.558082 14.495664 45.663743 4.289212 7.330397 ... 0.0 0.0 1.0 0.000 218.000 158.000 0.000 model3 18 comp4
1337 1 2015-06-18 09:00:00 169.324639 453.923471 101.313249 53.092274 28.155693 42.557599 7.688674 2.488851 ... 0.0 0.0 1.0 89.125 29.125 14.125 134.125 model3 18 comp4
1338 1 2015-06-18 12:00:00 190.691297 441.577271 97.192512 44.025425 6.296827 47.271008 7.577957 4.648336 ... 0.0 0.0 1.0 89.250 29.250 14.250 134.250 model3 18 comp4
1339 1 2015-06-18 15:00:00 163.602957 433.781185 93.173047 43.051368 18.147449 30.242516 10.870615 2.740922 ... 0.0 0.0 1.0 89.375 29.375 14.375 134.375 model3 18 comp4
1340 1 2015-06-18 18:00:00 178.587550 427.300815 118.643186 50.958609 2.229649 17.168087 15.714144 5.669003 ... 0.0 0.0 1.0 89.500 29.500 14.500 134.500 model3 18 comp4
1341 1 2015-06-18 21:00:00 158.851795 520.113831 101.974559 44.156671 14.554854 77.101968 4.788908 5.468742 ... 0.0 0.0 1.0 89.625 29.625 14.625 134.625 model3 18 comp4
1342 1 2015-06-19 00:00:00 162.191516 453.545010 101.521779 49.136659 12.553190 33.332139 5.983913 1.893250 ... 0.0 0.0 1.0 89.750 29.750 14.750 134.750 model3 18 comp4
1343 1 2015-06-19 03:00:00 166.732741 485.036994 100.284288 44.587560 11.099161 57.308864 3.052958 3.062215 ... 0.0 0.0 1.0 89.875 29.875 14.875 134.875 model3 18 comp4
1344 1 2015-06-19 06:00:00 172.059069 463.242610 96.905050 53.701413 14.757880 55.874000 3.204981 2.329615 ... 0.0 0.0 1.0 0.000 30.000 15.000 0.000 model3 18 comp4

16 rows × 30 columns

Modelling

After the feature engineering and labelling steps, either Azure Machine Learning Studio or this notebook can be used to create a predictive model. The recommend Azure Machine Learning Studio experiment can be found in the Cortana Intelligence Gallery: Predictive Maintenance Modelling Guide Experiment. Below, we describe the modelling process and provide an example Python model.

Training, Validation and Testing

When working with time-stamped data as in this example, record partitioning into training, validation, and test sets should be performed carefully to prevent overestimating the performance of the models. In predictive maintenance, the features are usually generated using lagging aggregates: records in the same time window will likely have identical labels and similar feature values. These correlations can give a model an "unfair advantage" when predicting on a test set record that shares its time window with a training set record. We therefore partition records into training, validation, and test sets in large chunks, to minimize the number of time intervals shared between them.

Predictive models have no advance knowledge of future chronological trends: in practice, such trends are likely to exist and to adversely impact the model's performance. To obtain an accurate assessment of a predictive model's performance, we recommend training on older records and validating/testing using newer records.

For both of these reasons, a time-dependent record splitting strategy is an excellent choice for predictive maintenace models. The split is effected by choosing a point in time based on the desired size of the training and test sets: all records before the timepoint are used for training the model, and all remaining records are used for testing. (If desired, the timeline could be further divided to create validation sets for parameter selection.) To prevent any records in the training set from sharing time windows with the records in the test set, we remove any records at the boundary -- in this case, by ignoring 24 hours' worth of data prior to the timepoint.

from sklearn.ensemble import GradientBoostingClassifier

# make test and training splits
threshold_dates = [[pd.to_datetime('2015-07-31 01:00:00'), pd.to_datetime('2015-08-01 01:00:00')],
                   [pd.to_datetime('2015-08-31 01:00:00'), pd.to_datetime('2015-09-01 01:00:00')],
                   [pd.to_datetime('2015-09-30 01:00:00'), pd.to_datetime('2015-10-01 01:00:00')]]

test_results = []
models = []
for last_train_date, first_test_date in threshold_dates:
    # split out training and test data
    train_y = labeled_features.loc[labeled_features['datetime'] < last_train_date, 'failure']
    train_X = pd.get_dummies(labeled_features.loc[labeled_features['datetime'] < last_train_date].drop(['datetime',
                                                                                                        'machineID',
                                                                                                        'failure'], 1))
    test_X = pd.get_dummies(labeled_features.loc[labeled_features['datetime'] > first_test_date].drop(['datetime',
                                                                                                       'machineID',
                                                                                                       'failure'], 1))
    # train and predict using the model, storing results for later
    my_model = GradientBoostingClassifier(random_state=42)
    my_model.fit(train_X, train_y)
    test_result = pd.DataFrame(labeled_features.loc[labeled_features['datetime'] > first_test_date])
    test_result['predicted_failure'] = my_model.predict(test_X)
    test_results.append(test_result)
    models.append(my_model)
sns.set_style("darkgrid")
plt.figure(figsize=(10, 6))
labels, importances = zip(*sorted(zip(test_X.columns, models[0].feature_importances_), reverse=True, key=lambda x: x[1]))
plt.xticks(range(len(labels)), labels)
_, labels = plt.xticks()
plt.setp(labels, rotation=90)
plt.bar(range(len(importances)), importances)
plt.ylabel('Importance')
<matplotlib.text.Text at 0x256510e55c0>

png

Evaluation

In predictive maintenance, machine failures are usually rare occurrences in the lifetime of the assets compared to normal operation. This causes an imbalance in the label distribution which usually causes poor performance as algorithms tend to classify majority class examples better at the expense of minority class examples as the total misclassification error is much improved when majority class is labeled correctly. This causes low recall rates although accuracy can be high and becomes a larger problem when the cost of false alarms to the business is very high. To help with this problem, sampling techniques such as oversampling of the minority examples are usually used along with more sophisticated techniques which are not covered in this notebook.

sns.set_style("darkgrid")
plt.figure(figsize=(8, 4))
labeled_features['failure'].value_counts().plot(kind='bar')
plt.xlabel('Component failing')
plt.ylabel('Count')
<matplotlib.text.Text at 0x25600910f60>

png

Also, due to the class imbalance problem, it is important to look at evaluation metrics other than accuracy alone and compare those metrics to the baseline metrics which are computed when random chance is used to make predictions rather than a machine learning model. The comparison will bring out the value and benefits of using a machine learning model better.

In the following, we use an evaluation function that computes many important evaluation metrics along with baseline metrics for classification problems. For a detailed explanation of the metrics, please refer to the scikit-learn documentation and a companion blog post (with examples in R, not Python),

from sklearn.metrics import confusion_matrix, recall_score, accuracy_score, precision_score

def Evaluate(predicted, actual, labels):
    output_labels = []
    output = []
    
    # Calculate and display confusion matrix
    cm = confusion_matrix(actual, predicted, labels=labels)
    print('Confusion matrix\n- x-axis is true labels (none, comp1, etc.)\n- y-axis is predicted labels')
    print(cm)
    
    # Calculate precision, recall, and F1 score
    accuracy = np.array([float(np.trace(cm)) / np.sum(cm)] * len(labels))
    precision = precision_score(actual, predicted, average=None, labels=labels)
    recall = recall_score(actual, predicted, average=None, labels=labels)
    f1 = 2 * precision * recall / (precision + recall)
    output.extend([accuracy.tolist(), precision.tolist(), recall.tolist(), f1.tolist()])
    output_labels.extend(['accuracy', 'precision', 'recall', 'F1'])
    
    # Calculate the macro versions of these metrics
    output.extend([[np.mean(precision)] * len(labels),
                   [np.mean(recall)] * len(labels),
                   [np.mean(f1)] * len(labels)])
    output_labels.extend(['macro precision', 'macro recall', 'macro F1'])
    
    # Find the one-vs.-all confusion matrix
    cm_row_sums = cm.sum(axis = 1)
    cm_col_sums = cm.sum(axis = 0)
    s = np.zeros((2, 2))
    for i in range(len(labels)):
        v = np.array([[cm[i, i],
                       cm_row_sums[i] - cm[i, i]],
                      [cm_col_sums[i] - cm[i, i],
                       np.sum(cm) + cm[i, i] - (cm_row_sums[i] + cm_col_sums[i])]])
        s += v
    s_row_sums = s.sum(axis = 1)
    
    # Add average accuracy and micro-averaged  precision/recall/F1
    avg_accuracy = [np.trace(s) / np.sum(s)] * len(labels)
    micro_prf = [float(s[0,0]) / s_row_sums[0]] * len(labels)
    output.extend([avg_accuracy, micro_prf])
    output_labels.extend(['average accuracy',
                          'micro-averaged precision/recall/F1'])
    
    # Compute metrics for the majority classifier
    mc_index = np.where(cm_row_sums == np.max(cm_row_sums))[0][0]
    cm_row_dist = cm_row_sums / float(np.sum(cm))
    mc_accuracy = 0 * cm_row_dist; mc_accuracy[mc_index] = cm_row_dist[mc_index]
    mc_recall = 0 * cm_row_dist; mc_recall[mc_index] = 1
    mc_precision = 0 * cm_row_dist
    mc_precision[mc_index] = cm_row_dist[mc_index]
    mc_F1 = 0 * cm_row_dist;
    mc_F1[mc_index] = 2 * mc_precision[mc_index] / (mc_precision[mc_index] + 1)
    output.extend([mc_accuracy.tolist(), mc_recall.tolist(),
                   mc_precision.tolist(), mc_F1.tolist()])
    output_labels.extend(['majority class accuracy', 'majority class recall',
                          'majority class precision', 'majority class F1'])
        
    # Random accuracy and kappa
    cm_col_dist = cm_col_sums / float(np.sum(cm))
    exp_accuracy = np.array([np.sum(cm_row_dist * cm_col_dist)] * len(labels))
    kappa = (accuracy - exp_accuracy) / (1 - exp_accuracy)
    output.extend([exp_accuracy.tolist(), kappa.tolist()])
    output_labels.extend(['expected accuracy', 'kappa'])
    

    # Random guess
    rg_accuracy = np.ones(len(labels)) / float(len(labels))
    rg_precision = cm_row_dist
    rg_recall = np.ones(len(labels)) / float(len(labels))
    rg_F1 = 2 * cm_row_dist / (len(labels) * cm_row_dist + 1)
    output.extend([rg_accuracy.tolist(), rg_precision.tolist(),
                   rg_recall.tolist(), rg_F1.tolist()])
    output_labels.extend(['random guess accuracy', 'random guess precision',
                          'random guess recall', 'random guess F1'])
    
    # Random weighted guess
    rwg_accuracy = np.ones(len(labels)) * sum(cm_row_dist**2)
    rwg_precision = cm_row_dist
    rwg_recall = cm_row_dist
    rwg_F1 = cm_row_dist
    output.extend([rwg_accuracy.tolist(), rwg_precision.tolist(),
                   rwg_recall.tolist(), rwg_F1.tolist()])
    output_labels.extend(['random weighted guess accuracy',
                          'random weighted guess precision',
                          'random weighted guess recall',
                          'random weighted guess F1'])

    output_df = pd.DataFrame(output, columns=labels)
    output_df.index = output_labels
                  
    return output_df
evaluation_results = []
for i, test_result in enumerate(test_results):
    print('\nSplit %d:' % (i+1))
    evaluation_result = Evaluate(actual = test_result['failure'],
                                 predicted = test_result['predicted_failure'],
                                 labels = ['none', 'comp1', 'comp2', 'comp3', 'comp4'])
    evaluation_results.append(evaluation_result)
evaluation_results[0]  # show full results for first split only
Split 1:
Confusion matrix
- x-axis is true labels (none, comp1, etc.)
- y-axis is predicted labels
[[119594     21      0      4      3]
 [    18    515      3      5      1]
 [     0      0    860      0      1]
 [    13      0      2    372      1]
 [     2      2      6      0    497]]

Split 2:
Confusion matrix
- x-axis is true labels (none, comp1, etc.)
- y-axis is predicted labels
[[95266    13     0     4     3]
 [   19   399     2     1     1]
 [    0     0   700     0     0]
 [   12     0     2   291     1]
 [    2     2     4     0   392]]

Split 3:
Confusion matrix
- x-axis is true labels (none, comp1, etc.)
- y-axis is predicted labels
[[71724     7     0     4     3]
 [   17   300     1     1     1]
 [    0     1   547     0     0]
 [   11     0     0   212     1]
 [    2     1     3     0   274]]
none comp1 comp2 comp3 comp4
accuracy 0.999327 0.999327 0.999327 0.999327 0.999327
precision 0.999724 0.957249 0.987371 0.976378 0.988072
recall 0.999766 0.950185 0.998839 0.958763 0.980276
F1 0.999745 0.953704 0.993072 0.967490 0.984158
macro precision 0.981759 0.981759 0.981759 0.981759 0.981759
macro recall 0.977566 0.977566 0.977566 0.977566 0.977566
macro F1 0.979634 0.979634 0.979634 0.979634 0.979634
average accuracy 0.999731 0.999731 0.999731 0.999731 0.999731
micro-averaged precision/recall/F1 0.999327 0.999327 0.999327 0.999327 0.999327
majority class accuracy 0.981152 0.000000 0.000000 0.000000 0.000000
majority class recall 1.000000 0.000000 0.000000 0.000000 0.000000
majority class precision 0.981152 0.000000 0.000000 0.000000 0.000000
majority class F1 0.990486 0.000000 0.000000 0.000000 0.000000
expected accuracy 0.962796 0.962796 0.962796 0.962796 0.962796
kappa 0.981922 0.981922 0.981922 0.981922 0.981922
random guess accuracy 0.200000 0.200000 0.200000 0.200000 0.200000
random guess precision 0.981152 0.004446 0.007062 0.003182 0.004158
random guess recall 0.200000 0.200000 0.200000 0.200000 0.200000
random guess F1 0.332269 0.008698 0.013642 0.006265 0.008148
random weighted guess accuracy 0.962755 0.962755 0.962755 0.962755 0.962755
random weighted guess precision 0.981152 0.004446 0.007062 0.003182 0.004158
random weighted guess recall 0.981152 0.004446 0.007062 0.003182 0.004158
random weighted guess F1 0.981152 0.004446 0.007062 0.003182 0.004158

About

Predictive_Maintenance_using_Machine-Learning_Microsoft_Casestudy


Languages

Language:Jupyter Notebook 100.0%