- Authors: Žan Jaklič, Iztok Ramovš, Matjaž Mav
- Draft preview: here
code : IPython Notebooks and Python files
data : required datasets and saved pickle DataFrames for faster execution
models : saved Neural Net Models
old : deprecated, unrunnable files from the project's 1st phase
Run notebooks in the given order:
parsing.ipynb
context_extraction.ipynb
feature_expansion.ipynb
modelling.ipynb
For evaluating saved FFN model run following:
python code/nn_from_feature_vector.py
To retrain FFN model run following:
python code/nn_from_feature_vector.py -train
# Download Anaconda (Python 3.7) for your OS
https://www.anaconda.com/products/individual
# Install PyTorch
conda install pytorch torchvision -c pytorch
# Install Stanza
conda install -c stanfordnlp stanza
# Open Python in Anaconda Prompt and download Slovene Stanza modelling
import stanza
stanza.download('sl')
# Install Keras and Tensorflow (gpu or cpu, doesnt't matter)
conda install -c conda-forge tensorflow
conda install keras
# Install h5py for saving and reading Keras models to disk
conda install h5py
# Install Pandas
conda install -c anaconda pandas