armiasalib / firesim

FireSim: Easy-to-use, Scalable, FPGA-accelerated Cycle-accurate Hardware Simulation in the Cloud

Home Page:https://fires.im

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

FireSim: Easy-to-use, Scalable, FPGA-accelerated Cycle-accurate Hardware Simulation

FireSim Documentation Status

Contents

  1. Using FireSim
  2. What is FireSim?
  3. What can I simulate with FireSim?
  4. Need help?
  5. Contributing
  6. Publications

Using FireSim

To get started with using FireSim, see the tutorials on the FireSim documentation site: https://docs.fires.im/.

Another good overview (in video format) is our tutorial from the Chisel Community Conference on YouTube.

What is FireSim?

FireSim is an open-source cycle-accurate FPGA-accelerated full-system hardware simulation platform that runs on cloud FPGAs (Amazon EC2 F1). FireSim is actively developed in the Berkeley Architecture Research Group in the Electrical Engineering and Computer Sciences Department at the University of California, Berkeley. You can learn more about FireSim in the following places:

What can I simulate with FireSim?

FireSim can simulate arbitrary hardware designs written in Chisel. With FireSim, you can write your own RTL (processors, accelerators, etc.) and run it at near-FPGA-prototype speeds on cloud FPGAs, while obtaining cycle-accurate performance results (i.e. matching what you would find if you taped-out a chip). Depending on the hardware design and the simulation scale, FireSim simulations run at 10s to 100s of MHz. You can also integrate custom software models for components that you don't want/need to write as RTL.

FireSim was originally developed to simulate datacenters by combining open RTL for RISC-V processors with a custom cycle-accurate network simulation. By default, FireSim provides all the RTL and models necessary to cycle-exactly simulate from one to thousands of multi-core compute nodes, derived directly from silicon-proven and open target-RTL (RISC-V Rocket Chip and BOOM), with an optional cycle-accurate network simulation tying them together. FireSim also provides a Linux distribution that is compatible with the RISC-V systems it simulates and automates the process of including new workloads into this Linux distribution. These simulations run fast enough to interact with Linux on the simulated system at the command line, like a real computer. Users can even SSH into simulated systems in FireSim and access the Internet from within them.

Head to the FireSim Website to learn more.

Need help?

Contributing

Publications

ISCA 2018: FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud

You can learn more about FireSim in our ISCA 2018 paper, which covers the overall FireSim infrastructure and large distributed simulations of networked clusters. This paper was selected as one of IEEE Micro’s “Top Picks from Computer Architecture Conferences, 2018”.

Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and Krste Asanović. FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud. In proceedings of the 45th International Symposium on Computer Architecture (ISCA’18), Los Angeles, CA, June 2018.

Paper PDF | IEEE Xplore | ACM DL | BibTeX

FPGA 2019: FASED: FPGA-Accelerated Simulation and Evaluation of DRAM

Our paper from FPGA 2019 details the DRAM model used in FireSim:

David Biancolin, Sagar Karandikar, Donggyu Kim, Jack Koenig, Andrew Waterman, Jonathan Bachrach, Krste Asanović, FASED: FPGA-Accelerated Simulation and Evaluation of DRAM, In proceedings of the 27th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, CA, February 2018.

Paper PDF

You can find other publications, including publications that use FireSim on the FireSim Website.

About

FireSim: Easy-to-use, Scalable, FPGA-accelerated Cycle-accurate Hardware Simulation in the Cloud

https://fires.im

License:Other


Languages

Language:Python 36.8%Language:C++ 22.9%Language:Scala 20.6%Language:C 10.0%Language:Shell 7.1%Language:Makefile 1.1%Language:Assembly 0.7%Language:Batchfile 0.5%Language:Verilog 0.2%