alphamodel / pandas_market_calendars

Exchange calendars to use with pandas for trading applications

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

pandas_market_calendars

Market calendars to use with pandas for trading applications.

https://travis-ci.org/rsheftel/pandas_market_calendars.svg?branch=master https://coveralls.io/repos/github/rsheftel/pandas_market_calendars/badge.svg?branch=master Documentation Status

Documentation

http://pandas_market_calendars.readthedocs.io/en/latest/

Overview

The Pandas package is widely used in finance and specifically for time series analysis. It includes excellent functionality for generating sequences of dates and capabilities for custom holiday calendars, but as an explicit design choice it does not include the actual holiday calendars for specific exchanges or OTC markets.

The pandas_market_calendars package looks to fill that role with the holiday, late open and early close calendars for specific exchanges and OTC conventions. pandas_market_calendars also adds several functions to manipulate the market calendars and includes a date_range function to create a pandas DatetimeIndex including only the datetimes when the markets are open.

This package is a fork of the Zipline package from Quantopian and extracts just the relevant parts. All credit for their excellent work to Quantopian.

As of v1.0 this package only works with Python3. This is consistent with Pandas dropping support for Python2.

Source location

Hosted on GitHub: https://github.com/rsheftel/pandas_market_calendars

Installation

pip install pandas_market_calendars

Arch Linux package available here: https://aur.archlinux.org/packages/python-pandas_market_calendars/

Quick Start

import pandas_market_calendars as mcal

# Create a calendar
nyse = mcal.get_calendar('NYSE')

# Show available calendars
print(mcal.get_calendar_names())
early = nyse.schedule(start_date='2012-07-01', end_date='2012-07-10')
early
                  market_open             market_close
=========== ========================= =========================
 2012-07-02 2012-07-02 13:30:00+00:00 2012-07-02 20:00:00+00:00
 2012-07-03 2012-07-03 13:30:00+00:00 2012-07-03 17:00:00+00:00
 2012-07-05 2012-07-05 13:30:00+00:00 2012-07-05 20:00:00+00:00
 2012-07-06 2012-07-06 13:30:00+00:00 2012-07-06 20:00:00+00:00
 2012-07-09 2012-07-09 13:30:00+00:00 2012-07-09 20:00:00+00:00
 2012-07-10 2012-07-10 13:30:00+00:00 2012-07-10 20:00:00+00:00
mcal.date_range(early, frequency='1D')
DatetimeIndex(['2012-07-02 20:00:00+00:00', '2012-07-03 17:00:00+00:00',
               '2012-07-05 20:00:00+00:00', '2012-07-06 20:00:00+00:00',
               '2012-07-09 20:00:00+00:00', '2012-07-10 20:00:00+00:00'],
              dtype='datetime64[ns, UTC]', freq=None)
mcal.date_range(early, frequency='1H')
DatetimeIndex(['2012-07-02 14:30:00+00:00', '2012-07-02 15:30:00+00:00',
               '2012-07-02 16:30:00+00:00', '2012-07-02 17:30:00+00:00',
               '2012-07-02 18:30:00+00:00', '2012-07-02 19:30:00+00:00',
               '2012-07-02 20:00:00+00:00', '2012-07-03 14:30:00+00:00',
               '2012-07-03 15:30:00+00:00', '2012-07-03 16:30:00+00:00',
               '2012-07-03 17:00:00+00:00', '2012-07-05 14:30:00+00:00',
               '2012-07-05 15:30:00+00:00', '2012-07-05 16:30:00+00:00',
               '2012-07-05 17:30:00+00:00', '2012-07-05 18:30:00+00:00',
               '2012-07-05 19:30:00+00:00', '2012-07-05 20:00:00+00:00',
               '2012-07-06 14:30:00+00:00', '2012-07-06 15:30:00+00:00',
               '2012-07-06 16:30:00+00:00', '2012-07-06 17:30:00+00:00',
               '2012-07-06 18:30:00+00:00', '2012-07-06 19:30:00+00:00',
               '2012-07-06 20:00:00+00:00', '2012-07-09 14:30:00+00:00',
               '2012-07-09 15:30:00+00:00', '2012-07-09 16:30:00+00:00',
               '2012-07-09 17:30:00+00:00', '2012-07-09 18:30:00+00:00',
               '2012-07-09 19:30:00+00:00', '2012-07-09 20:00:00+00:00',
               '2012-07-10 14:30:00+00:00', '2012-07-10 15:30:00+00:00',
               '2012-07-10 16:30:00+00:00', '2012-07-10 17:30:00+00:00',
               '2012-07-10 18:30:00+00:00', '2012-07-10 19:30:00+00:00',
               '2012-07-10 20:00:00+00:00'],
              dtype='datetime64[ns, UTC]', freq=None)

Contributing

All improvements and additional (and corrections) in the form of pull requests are welcome. This package will grow in value and correctness the more eyes are on it.

To add new functionality please include tests which are in standard pytest format.

Use pytest to run the test suite.

Future

This package is open sourced under the MIT license. Everyone is welcome to add more exchanges or OTC markets, confirm or correct the existing calendars, and generally do whatever they desire with this code.

About

Exchange calendars to use with pandas for trading applications

License:MIT License


Languages

Language:Python 99.9%Language:Shell 0.1%