all3xfx / einstein-vision-node

Example image recognition web app using Einstein Vision Heroku Add-on

Home Page:https://einstein-vision.herokuapp.com

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Einstein Vision
Image Recognition demo Build Status

This Node.js sample app lets you upload an image to get predictions from Salesforce Einstein Vision general classifier using the Add-on.

When deploying this app, a new Einstein Vision add-on will be created which includes an Einstein Vision account.

Deploy

Select a Model

Pre-built models let you get started quickly with the service. You can use these models instead of creating your own custom model. When you call the service, you pass in the ID of the model. The model IDs are:

  • GeneralImageClassifier (default for this app)
    • identify a variety of images
    • contains thousands of labels
  • FoodImageClassifier
    • identify different foods
    • contains over 500 labels.

To set the model ID for an app:

✏️ Replace each $VARIABLE in the following command with a specific value: the desired model ID and the Heroku app name.

heroku config:set CUSTOM_MODEL_ID=$MODEL_ID --app $APP_NAME

Create a Custom Model

Once a Heroku app is deployed with the Einstein Vision add-on, use the app credentials to create a custom model and upload training images.

  1. Fetch your credentials from the app

✏️ Replace $APP_NAME in the following commands with the unique name of the Heroku app w/ Einstein Vision Add-on.

heroku config --app $APP_NAME
  1. Set-up authorization
  • Use the value of EINSTEIN_VISION_ACCOUNT_ID for the Account ID
  • Use the complete multi-line value of EINSTEIN_VISION_PRIVATE_KEY for the Private Key
  1. Create & train the model
  2. Once trained, set the Heroku app to use its modelId
heroku config:set CUSTOM_MODEL_ID=$MODEL_ID --app $APP_NAME

Share a Custom Model

Share an add-on containing custom-trained models between multiple apps by attaching the add-on to each app:

# First, fetch the `einstein-vision` add-on identifier from the original app.
heroku addons --app $APP_NAME

# Then, attach that add-on to another app.
heroku addons:attach $ADD_ON_IDENTIFIER --app $OTHER_APP_NAME

# Finally, set the custom model ID on the other app.
heroku config:set CUSTOM_MODEL_ID=$MODEL_ID --app $OTHER_APP_NAME

👓 Background When a Einstein Vision add-on is created, it gets a new Einstein Vision account. As custom models are created, they are scoped to that account. To share those models, you may attach the add-on to multiple apps.

API Authentication

The Einstein Vision add-on sets three configuration variables to provide full access to its API:

  • EINSTEIN_VISION_URL—The API endpoint.
  • EINSTEIN_VISION_ACCOUNT_ID—Your account ID.
  • EINSTEIN_VISION_PRIVATE_KEY—An RSA key in PEM format.

The steps this app uses to access the API are:

  1. Exchange a JWT for an expiring access token
  • implemented in lib/update-token.js
  • endpoint ${EINSTEIN_VISION_URL}v1/oauth2/token
  • payload includes $EINSTEIN_VISION_ACCOUNT_ID
  • signed with $EINSTEIN_VISION_PRIVATE_KEY
  1. Make API requests using the acquired access token
  • implementated in lib/query-vision-api.js
  • endpoints ${EINSTEIN_VISION_URL}v1/vision/*
  • request Header Authorization: Bearer ${token}
  1. Auto-refresh the access token, when it expires

👓 For more details see Einstein Vision authorization.

Source-Based Deploy

Instead of using the Deploy to Heroku button, you may deploy your own forked/customized version of the source code.

✏️ Replace $APP_NAME in the following commands with the unique name of your app.

git clone https://github.com/heroku/einstein-vision-node.git
cd einstein-vision-node

heroku create $APP_NAME
heroku addons:create cloudinary
heroku addons:create einstein-vision
git push heroku master

heroku open

The app defaults to the General Image identification model supplied by the Einstein Vision. If you create your own model you can use it by setting the config var:

heroku config:set CUSTOM_MODEL_ID=$modelId

Development

Run the API Server

The simplest way to work locally is to use the config vars of an existing Heroku app with the Einstein Vision Add-on. Use the Deploy to Heroku button (above) to provision such a dev app.

✏️ Then, replace $APP_NAME in the following commands with the name of that Einstein Vision dev app.

# Initial setup
npm install
heroku plugins:install heroku-run-localjs

# Start the server
heroku run:local npm start --app $APP_NAME

Run the React UI

A React app with hot-reloading via create-react-app is served from react-ui/; automatically proxies backend requests to the local Node server.

In a separate terminal from the API server, start the UI:

# Initial setup
npm install --prefix react-ui

# Start the server
npm start --prefix react-ui

Testing

npm test

Manual Environment Config

cp .env.sample .env
# Then, update the variables in `.env` with your values.

# Point this at your locally-saved private key.
export EINSTEIN_VISION_PRIVATE_KEY=`cat path/to/private.key`

# Run the API server with those environment variables.
heroku local

If you a private key is not provided, an access token may be explicitly set as EINSTEIN_VISION_TOKEN.

About

Example image recognition web app using Einstein Vision Heroku Add-on

https://einstein-vision.herokuapp.com

License:MIT License


Languages

Language:JavaScript 78.3%Language:CSS 17.9%Language:HTML 3.8%