adith13 / warren

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Warren - Stock Price Predictor

Codacy Badge GitHub GitHub code size in bytes GitHub repo size GitHub language count GitHub last commit

Stock market prediction is the act of trying to determine the future value of a company stock or other financial instrument traded on an exchange. The successful prediction of a stock's future price could yield significant profit. The efficient-market hypothesis suggests that stock prices reflect all currently available information and any price changes that are not based on newly revealed information thus are inherently unpredictable. Others disagree and those with this viewpoint possess myriad methods and technologies which purportedly allow them to gain future price information.

We make use of Facebook's Time Series forcasting algorithm Prophet to predict stock market price of US based companies in real time using multi-variate, single step forecasting strategy.

Header

Getting Started

Download or clone project from github:

$ git clone https://github.com/nityansuman/warren.git

Create a project environment (Anaconda recommended):

$ conda create --name envname python
$ conda activate envname

Install prerequisites:

$ pip install -r REQUIREMENTS.txt

Run project:

$ cd warren
$ python runserver.py

Model Validation Analysis

Facebook (Stock: FB) Validation FB_validation

Microsoft (Stock: MSFT) Validation MSFT_validation

Google (Stock: GOOGL) Validation GOOGLE_validation

Support

If you like the work I do, show your appreciation by 'FORK', 'STAR' and 'SHARE'.

forthebadge made-with-python Forthebadge

About

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

License:GNU General Public License v3.0


Languages

Language:Jupyter Notebook 73.1%Language:CSS 24.1%Language:Python 1.8%Language:HTML 1.0%