Graph-Segmenter: Graph Transformer with Boundary-aware Attention for Semantic Segmentation
Get start
Installation
Please refer to get_started.md for installation and dataset preparation.
Inference
# single-gpu testing
python tools/test.py <CONFIG_FILE> <SEG_CHECKPOINT_FILE> --eval mIoU
# multi-gpu testing
tools/dist_test.sh <CONFIG_FILE> <SEG_CHECKPOINT_FILE> <GPU_NUM> --eval mIoU
# multi-gpu, multi-scale testing
tools/dist_test.sh <CONFIG_FILE> <SEG_CHECKPOINT_FILE> <GPU_NUM> --aug-test --eval mIoU
Training
To train with pre-trained models, run:
# single-gpu training
python tools/train.py <CONFIG_FILE> --options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]
# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]
Citing Graph-Segmenter
@article{liu2021Swin,
title={Graph-Segmenter: Graph Transformer with Boundary-aware Attention for Semantic Segmentation},
author={Zizhang Wu and Jun Li and Yuanzhu Gan and Muqing Fang and Tianhao Xu and Fan Wang},
year={2022}
}