ack4 / MiDaS

Code for robust monocular depth estimation described in "Ranftl et. al., Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer, arXiv:1907.01341"

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer

This repository contains code to compute depth from a single image. It accompanies our paper:

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer
René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, Vladlen Koltun

The pre-trained model corresponds to DS 4 with multi-objective optimization enabled.

Changelog

  • [Dec 2019] Released new version of MiDaS - the new model is significantly more accurate and robust
  • [Jul 2019] Initial release of MiDaS (Link)

Setup

  1. Download the model weights model-f45da743.pt and place the file in the root folder.

  2. Set up dependencies:

    conda install pytorch torchvision opencv

    The code was tested with Python 3.7, PyTorch 1.2.0, and OpenCV 3.4.2.

Usage

  1. Place one or more input images in the folder input.

  2. Run the model:

    python run.py
  3. The resulting inverse depth maps are written to the output folder.

Citation

Please cite our paper if you use this code or any of the models:

@article{Ranftl2019,
	author    = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun},
	title     = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer},
	journal   = {arXiv:1907.01341},
	year      = {2019},
}

License

MIT License

About

Code for robust monocular depth estimation described in "Ranftl et. al., Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer, arXiv:1907.01341"

License:MIT License


Languages

Language:Python 100.0%