achen353 / dacon

Data Augmentation for Entity Matching using Consistency Learning

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

DACon

Code for CS 8803 DMM Project: Data Augmentation for Entity Matching using Consistency Learning

Requirements

  • Python 3.7+
  • PyTorch 1.10.0+cu111: default CUDA version 11.1 (change the --find-links in requirements.txt for other versions)
  • Transformers 4.12.3
  • NVIDIA Apex (fp16 training): requires Nvidia graphic card

Install required packages

pip install -r requirements.txt
# Apex requires CUDA-supported graphic cards (Nvidia graphic cards)
git clone https://github.com/NVIDIA/apex.git
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Experiment Results

F1 scores on all EM datasets

Method Abt-Buy Amazon-Google DBLP-ACM (clean/dirty) DBLP-Scholar (clean/dirty) Walmart-Amazon (clean/dirty)
DM + RoBERTa 85.71 82.35 97.92/97.92 92.63/91.49 72.73/67.92
RoBERTa 80.49 65.02 98.97/96.63 92.18/92.30 71.50/73.55
InvDA 84.26 59.70 96.97/96.51 91.99/91.69 71.85/73.48
Rotom 76.34 62.38 96.76/97.16 91.80/91.63 66.28/76.66
Rotom + SSL 81.89 62.34 98.09/97.20 92.88/92.97 72.19/71.55
DACon Baseline 81.06 62.95 96.73/96.98 92.42/92.00 73.71/71.91
DACon One-to-Many 80.21 61.06 96.96/97.19 91.94/91.45 76.88/75.14
DACon Fixed Consistency 83.60 62.87 92.29/96.40 91.33/91.69 78.93/74.18
DACon Consistency 80.81 60.30 97.29/95.95 92.02/91.86 74.60/72.11

Average training time with different training + validation size

Method 300 450 600 780
DM + RoBERTa 65.17 90.46 114.28 139.11
RoBERTa 100.67 111.24 121.17 132.65
InvDA 112.45 130.90 148.07 166.12
Rotom 165.73 216.40 263.81 313.18
Rotom + SSL 165.73 216.17 260.64 313.51
DACon Baseline 168.78 182.93 196.23 211.42
DACon One-to-Many 190.14 216.42 238.87 264.89
DACon Fixed Consistency 190.93 216.88 240.85 266.48
DACon Consistency 185.49 218.16 240.49 266.91

See the report for full results and experiment details.

Model Training

To train a model with Rotom:

CUDA_VISIBLE_DEVICES=0 python train_any.py \
  --task em_DBLP-ACM \
  --size 300 \
  --logdir results_em/ \
  --finetuning \
  --batch_size 32 \
  --lr 3e-5 \
  --n_epochs 20 \
  --max_len 128 \
  --fp16 \
  --lm roberta \
  --da dacon_baseline \
  --balance \
  --run_id 0

The current version supports 3 tasks: entity matching (EM), error detection (EDT), and text classification (TextCLS). The supported tasks are:

Type Dataset Names taskname pattern
EM Abt-Buy, Amazon-Google, DBLP-ACM, DBLP-GoogleScholar, Walmart-Amazon em_{dataset}, e.g., em_DBLP-ACM
EDT beers, hospital, movies, rayyan, tax cleaning_{dataset}, e.g., cleaning_beers
TextCLS AG, AMAZON2, AMAZON5, ATIS, IMDB, SNIPS, SST-2, SST-5, TREC textcls_{dataset}, e.g., textcls_AG
TextCLS, splits from Hu et al. IMDB, SST-5, TREC compare1_{dataset}, e.g., compare1_IMDB
TextCLS, splits from Kumar et al. ATIS, SST-2, TREC compare2_{dataset}, e.g., compare2_ATIS

Parameters:

  • --task: the taskname pattern specified following the above table
  • --size: the dataset size (optional). If not specified, the entire dataset will be used. The size ranges are {300, 450, 600, 750} for EM, {50, 100, 150, 200} For EDT, and {100, 300, 500} for TextCLS
  • --logdir: the path for TensorBoard logging (F1, acc, precision, and recall)
  • --finetuning: always keep this flag on
  • --batch_size, --lr, --max_len, --n_epochs: the batch size, learning rate, max sequence length, and the number of epochs for model training
  • --fp16: whether to use half-precision for training
  • --lm: the language model to fine-tune. We currently support bert, distilbert, and roberta
  • --balance: a special option for binary classification (EM and EDT) with skewed labels (#positive labels >> #negative labels). If this flag is on, then the training process will up-sample the positive labels
  • --warmup: (new) if this flag is on with SSL, then first warm up the model by training it on labeled data only before running SSL. Only support EM for now.
  • --run_id: the integer ID of the run e.g., {0, 1, 2, ...}
  • --da: the data augmentation method (See table below)
Method Operator Name(s)
No DA (simply LM fine-tuning) None
Regular transformation-based DA ['del', 'drop_col', 'append_col', 'swap', 'ins'] for EM/EDT
['del', 'token_del_tfidf', 'token_del', 'shuffle', 'token_repl', 'token_repl_tfidf'] for TextCLS
Inversed DA (InvDA) t5 / invda
Rotom (w/o semi-supervised learning) auto_filter_weight_no_ssl
Rotom (w. semi-supervised learning) auto_filter_weight
DACon Baseline dacon_baseline
DACon One-to-Many dacon_one_to_many
DACon Fixed Consistency dacon_fixed_consistency
DACon Consistency dacon_consistency

For the invda fine-tuning, see invda/README.md.

Experiment scripts

All experiment scripts are available in scripts/. To run the experiments for a task (em, cleaning, or textcls):

python scripts/run_all_em.py

About

Data Augmentation for Entity Matching using Consistency Learning

License:BSD 3-Clause "New" or "Revised" License


Languages

Language:Jupyter Notebook 54.8%Language:Roff 33.6%Language:Python 11.6%