Zzzzero / OptionPricing

Research on OTC options pricing models

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

OptionPricing - Research on OTC options pricing models

=======================================================================================================================

  1. SVI MODEL =======================================================================================================================

step 1. DATA PREPARATION :

Prepare option data for optimization, using call options/put options/call & put combined by put call parity adjusted rates.

Utilities functions in svi_prepare_vol_data.py

step 2. MODEL CALIBRATION :

Use Quasi-Explicit Optimization (Nelder-Mead Simplex Algorithm) to calibrate model parameters.

Run svi_calibration_params_opt_XXX.py (XXX stands for different dataset in step 1)

step 3. INSAMPLE PERFORMANCE:

Insample pricing error analysis.

Run insample_performance_svi_put.py

step 4. DYNYMIC HEDGE PERFORMANCE:

Dynamic hedge using t-2 calibrated params and t-1 delta to calculate t date hedge error.Hedge could be based on smoothed implied volatility curve (3-day or 5-day) or original ones.

Run hedging_performance_svi_XXX.py (XXX stands for methods and dataset call/put)

=======================================================================================================================

About

Research on OTC options pricing models


Languages

Language:Python 85.8%Language:HTML 10.3%Language:CSS 3.9%