This is the LRGA solution for ogbl-vessel of the OGB Challenge.
python==3.8
torch==1.10.1+cu102
torch-geometric==2.0.4
ogb==1.3.4
The dataset ogbl-vessel should be download and placed in ./dataset/ogbl_vessel/
.
Performance on ogbl-vessel (10 runs):
Highest Train AUC: 50.64 ± 2.61
Highest Valid AUC: 54.18 ± 4.39
Final Train AUC: 47.84 ± 2.29
Final Test AUC: 54.15 ± 4.37
python gnn.py --encoder_name='lrga' --hidden_channels=16 --lr=1e-6 --num_layers=3 --epochs=100 --dropout=0.5
[1] https://github.com/snap-stanford/ogb/tree/master/examples/linkproppred/vessel