Xu-Shuhao / PI-REC

:fire: PI-REC: Progressive Image Reconstruction Network With Edge and Color Domain. :fire: 图像翻译,条件GAN,AI绘画(我手残)

Home Page:https://arxiv.org/abs/1903.10146

Geek Repo:Geek Repo

Github PK Tool:Github PK Tool

PI-REC

Version Status Platform PyTorch License

Progressive Image Reconstruction Network With Edge and Color Domain


When I was a schoolchild,

I dreamed about becoming a painter.

With PI-REC, we realize it nowadays.

For you, for everyone.




English | 中文版


🏳️‍🌈 Demo show time 🏳️‍🌈

Draft2Painting

Tool operation



Introduction

We propose a universal image reconstruction method to represent detailed images purely from binary sparse edge and flat color domain. Here is the open source code and the drawing tool.
*The codes of training for release are no completed yet, also waiting for release license of lab.

Find more details in our paper: Paper on arXiv

Quick Overview of Paper

What can we do?

  • Figure (a): Image reconstruction from extreme sparse inputs.
  • Figure (b): Hand drawn draft translation.
  • Figure (c): User-defined edge-to-image (E2I) translation.

Model Architecture

We strongly recommend you to understand our model architecture before running our drawing tool. Refer to the paper for more details.

Prerequisites

  • Python 3+
  • PyTorch 1.0 (0.4 is not supported)
  • NVIDIA GPU + CUDA cuDNN

Installation

  • Clone this repo
  • Install PyTorch and dependencies from http://pytorch.org
  • Install python requirements:
pip install -r requirements.txt

Usage

We provide two ways in the project:

  • Basic command line mode for batch test
  • Drawing tool GUI mode for creation

Firstly, follow steps below to prepare pre-trained models with patience:

  1. Download the pre-trained models you want here: Google Drive | Baidu (Extraction Code: 9qn1)
  2. Unzip the .7z and put it under your dir ./models/.
    So make sure your path now is: ./models/celeba/<xxxxx.pth>
  3. Complete the above Prerequisites and Installation

Files are ready now! Read the User Manual for firing operations.




中文版介绍 🀄

Demo演示

自己看上面的咯~

简介

我们提出了一种基于GAN的渐进式训练方法 PI-REC,能从超稀疏二值边缘以及色块中还原重建真实图像。 这属于图像重建,图像翻译,条件图像生成,AI自动绘画的前沿交叉领域,而非简单的以图搜图。更多相关可以阅读论文里的 Related Work。
这里包含了测试代码以及交互式绘画工具。
*由于训练过程过于复杂,用于训练的发布版代码还未完成

在我们的论文中你可以获得更多信息(强烈推荐阅读): Paper on arXiv

论文概览

PI-REC能做啥?

  • Figure (a): 超稀疏输入信息重建原图。
  • Figure (b): 手绘草图转换。
  • Figure (c): 用户自定义的 edge-to-image (E2I) 转换.

模型结构

我们强烈建议你先仔细阅读论文熟悉我们的模型结构,对运行使用大有裨益。

基础环境

  • Python 3
  • PyTorch 1.0 (0.4 会报错)
  • NVIDIA GPU + CUDA cuDNN (当前版本已可选cpu,请修改config.yml中的DEVICE

第三方库安装

  • Clone this repo
  • 安装PyTorch和torchvision --> http://pytorch.org
  • 安装 python requirements:
pip install -r requirements.txt

运行使用

我们提供以下两种方式运行:

  • 基础命令行模式 用来批处理测试整个文件夹的图片
  • 绘画GUI工具模式 用来创作

首先,请耐心地按照以下步骤做准备:

  1. 在这里下载你想要的预训练模型文件:Google Drive | Baidu (提取码: 9qn1)
  2. 解压,放到目录./models
    现在你的目录应该像这样: ./models/celeba/<xxxxx.pth>
  3. 完成上面的基础环境和第三方库安装

啦啦啦啦,准备工作已完成,阅读用户手册来开始运行程序咯~

Acknowledgment

Code structure is modified from Anime-InPainting, which is based on Edge-Connect.

BibTex

@article{you2019pirec,
  title={PI-REC: Progressive Image Reconstruction Network With Edge and Color Domain},
  author={You, Sheng and You, Ning and Pan, Minxue},
  journal={arXiv preprint arXiv:1903.10146},
  year={2019}
}

About

:fire: PI-REC: Progressive Image Reconstruction Network With Edge and Color Domain. :fire: 图像翻译,条件GAN,AI绘画(我手残)

https://arxiv.org/abs/1903.10146

License:Other


Languages

Language:Python 100.0%