DenseMapNet
Keras code of "Fast Disparity Estimation using Dense Networks" paper at the International Conference on Robotics and Automation, Australia, 2018 (ICRA 2018)
DenseMapNet Features
- Predicts disparity map using full resolution stereo RGB
- Fast at >=30Hz on NVIDIA 1080Ti GPU
- Tiny network with only 290k parameters
- Accurate with Low End-Point-Error or EPE
Sample Predictions
Driving, Monkaa, and Flying Datasets
KITTI 2015
Demo
Dataset
Download datasets:
Copy: cp driving.tar.bz2 densemapnet/dataset
Change dir and extract: cd densemanpnet/dataset; tar jxvf driving.tar.bz2
Available datasets:
driving
- Drivingmpi
- MPI Sintel
Additional datasets will be available in the future.
Training
In some datasets, the train data is split into multiple files. For example, driving
is split into 4 files while mpi
fits into 1 file.
To train the network:
python3 predictor.py --dataset=driving --num_dataset=4
Alterntaively, load the pre-trained weigths:
python3 predictor.py --dataset=driving --num_dataset=4 --weights=checkpoint/driving.densemapnet.weights.h5
Testing
To measure EPE using test set:
python3 predictor.py --dataset=driving --num_dataset=4 --weights=checkpoint/driving.densemapnet.weights.h5 --notrain
To benchmark speed only:
python3 predictor.py --dataset=driving --num_dataset=4 --weights=checkpoint/driving.densemapnet.weights.h5 --predict
To generate disparity predictions on both train and test datasets (complete sequential images used to create the video):
python3 predictor.py --dataset=driving --num_dataset=4 --weights=checkpoint/driving.densemapnet.weights.h5 --predict --images
Citation
If you find this work useful, please cite:
@conference{Atienza18,
title = {Fast Disparity Estimation using Dense Networks},
author = {Atienza, Rowel},
booktitle = {Proceedings 2018 IEEE International Conference on Robotics and Automation (ICRA)},
publisher = {IEEE},
address = {Piscataway, NJ, USA},
month = May,
year = {2018},
month_numeric = {5}
}